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Abstract

The growing demand for gaining valuable insights from a wide variety of sectors
leads to the exposure of increasingly sensitive user data. The associated privacy
risks prompted regulatory bodies to react with new privacy regulations that create
a pressing need to natively integrate privacy controls into data analytics frameworks
not only to protect privacy but also to fulfill compliance.
This thesis presents the design of PolicyCrypt, a privacy platform that relies on

encryption to enforce users’ privacy. PolicyCrypt follows a user-centric model to
privacy that allows users to restrict how their data can be stored, exposed, and
processed. Users express their preferences with a simple privacy policy language
that the platform enforces via encryption.
PolicyCrypt offers a framework to reconcile the privacy interests of users, with

the demand for extracting valuable information from sensitive data. Towards this,
PolicyCrypt implements a unified interface that provides privacy transformed views of
data streams. The data streams remain end-to-end encrypted and the platform only
exposes transformed streams that comply with users’ privacy policies to applications
and data analytics frameworks.
PolicyCrypt executes privacy-preserving data transformations in real-time and

scales to thousands of distributed data sources, which enables large-scale low-latency
data streaming analytics. This work introduces a hybrid MPC-PHE approach to
support scalable and efficient privacy-preserving data transformations over multiple
encrypted data streams across users. As part of this approach, this thesis proposes
a new optimized variant of a secure aggregation protocol, tailored explicitly to the
recurring nature of streaming analytics. Finally, a prototype implementation of
the platform demonstrates PolicyCrypt’s practicality and performance in realistic
application scenarios.
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1 Introduction

Recent years have seen unprecedented growth in the collection of sensitive data. New
data is generated at a tremendous rate, and volume and data sources become more
and more pervasive. This development is primarily attributed to the recognition
that there is immense value in extracting information from data, especially when
data from different sources is brought together.
An important emerging type of data is streaming data. The collection of these

unbounded streams of data is increasingly prevalent across a wide range of systems
in diverse domains such as health, agriculture, transportation, operational insight,
and smart cities [13,31]. The growth of streaming data is largely associated with the
rising demand for instrumentation. Individuals and organizations are continuously
logging various metrics that report the state of systems or organisms for better
diagnoses, forecasting, decision making, and resource allocation in timely manners.
The growth of streaming data is only expected to continue with further advances in
sensor technology, data analytics, machine learning, and cloud computing.

However, with more data being collected and processed, reports on unauthorized
selling and sharing of data are rising [16,28,73]. These growing concerns regarding
data privacy have led regulatory bodies to haste to work on data privacy regulations
to mitigate private data misuse [3,86]. A legitimate concern is that privacy regulations
are leading to more siloed sensitive data, hence, diminishing the potential of data
in advancing many vital sectors. It thus remains unclear how data can be safely
brought together to derive valuable insights and simultaneously respect individuals’
rights to privacy.
While mechanisms for data security targeting authorization, access control, and

data protection have matured and are natively integrated into many systems and
data analytics frameworks [9–11], their equivalence for data privacy remains primitive.
Today there is a shortage of technical tools for privacy in data analytics platforms.

Data Privacy – Status Quo The current data privacy model builds on privacy
policies that describe how data is collected, processed, and shared. Privacy poli-
cies are documents written by legal departments to comply with existing privacy
regulations. Users are left with no choice but to consent to the target service’s
privacy policy if they wish to use it. Despite the new privacy regulations, most of the
auditing and enforcement of compliance is done manually by organizations. Even
though there have been some efforts to integrate privacy mechanisms in products
that collect sensitive data, these remain the exception and are done by organizations
with significant privacy and security teams [6–8].
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1 Introduction

We identify three main issues with the status quo: (i) users lack both control over
their data and expressing their privacy preferences, (ii) there is a lack of privacy tools
and frameworks for automatic compliance and privacy enforcement, (iii) resulting
in data curators being trusted to enforce privacy, which often leaves data vulnerable
to data breaches.

In essence, what is missing is a user-centric end-to-end approach to data privacy
that starts at the source of the data. To be effective, such an approach must easily
integrate into existing data processing pipelines and can coexist with data protection
mechanisms in place. Moreover, a compelling approach should democratize privacy
in the current data frameworks and put users in control of how and in what form
their data can be used. Also, the manual enforcement of compliance should be
replaced with automatic enforcement of privacy providing rigorous guarantees.
The work outlined in this thesis addresses the simultaneous simplification of

privacy compliance and protection of the user’s privacy. Doing so might help towards
unlocking valuable but currently inaccessible data silos that could help to tackle
crucial problems in domains such as health, transportation, and smart cities.

1.1 Approach

This thesis presents PolicyCrypt, a design of a new privacy platform that integrates
privacy-preserving transformations into existing streaming analytics platforms while
empowering users with unparalleled control over their data (Figure 1.1).

PolicyCrypt is the missing link between users and service providers that allows for
privacy protection while automatically enforcing compliance. To do so, PolicyCrypt
offers users an interface to express their data stream privacy preferences in the
form of an expressive yet straightforward privacy policy language. Furthermore,
PolicyCrypt provides a streaming query language that service providers can use
to express their data requirements. Last, PolicyCrypt outlines a simple matching
algorithm to reconcile the service provider’s interest in specific streaming queries
with user-defined privacy policies.

The platform follows an end-to-end encryption paradigm where data is encrypted
at the source and remains protected until the data is in a form that respects the

Users Service Provider

App

Sensor

App

Policy

Policy

Policy

Continuous

Query



Policy Complying

Data Stream

……

PolicyCrypt

Privacy 

Transformation

Figure 1.1: Approach of the PolicyCrypt privacy platform.
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1.2 Challenges

user-defined privacy preferences. In PolicyCrypt, the user-defined privacy policies
are enforced with encryption, which provides users with strong data protection guar-
antees. This approach enables performing privacy transformations in an untrusted
cloud environment without granting access to raw data.

1.2 Challenges

A compelling privacy platform for streaming data must overcome several system,
privacy, and security challenges. On the privacy end, the main challenge is that
such a platform must provide cryptographic guarantees regarding data protection,
which ensure that only users themselves have access as long as the data is not in a
privacy-preserving form.
Furthermore, a challenge that all user-centric privacy approaches share is that

users can express different privacy preferences. As a result, a privacy platform must
be able to handle a diverse set of privacy policies where conflicts may arise.

On the system side, modern stream processing pipelines process data in motion in
real-time. A privacy platform for streaming data must thus be optimized to achieve
low-latency while simultaneously scale to thousands of resource-constrained data
sources. The design of PolicyCrypt addresses all these challenges.

1.3 Contributions

The contributions of this thesis are:

• The design of PolicyCrypt, a new privacy platform for streaming data that
relies on encryption to enforce user-defined privacy policies.

• A new privacy policy language and an adaption of an existing streaming query
language for users and service providers to express their interests.

• A new approach that decouples privacy transformations from encryption at
the source. This decoupling allows performing transformations corresponding
to various privacy policies without requiring re-encryption of data.

• A new technique that enhances an existing secure aggregation protocol from
Ács et al. [12]. The optimization is specifically tailored for recurring stream pro-
cessing workloads and helps PolicyCrypt to meet the tight latency requirements
of target applications.

• A prototype implementation of PolicyCrypt on top of Apache Kafka [46].

• A comprehensive system evaluation to quantify the overheads of PolicyCrypt
in terms of computation time, throughput, latency, bandwidth, and storage

3



1 Introduction

against a reference implementation operating on unencrypted data. Further-
more, the thesis provides an evaluation of the optimized secure aggregation
protocol that compares the performance to the original protocol.

1.4 Thesis Outline

The remainder of this thesis is structured as follows: The thesis starts with pre-
senting background material that is necessary to understand the design rationale
of PolicyCrypt (Chapter 2). Then, it presents a discussion on the related work
(Chapter 3). Since this thesis proposes a new approach to privacy with PolicyCrypt,
the discussion in related work targets aspects close to this work. The thesis con-
tinuous by presenting an overview of the system design (Chapter 4), describes the
cryptographic constructions of this work (Chapter 5), and explains system design
aspects of PolicyCrypt (Chapter 6). It further covers the implementation of the
PolicyCrypt prototype (Chapter 7) and evaluates the performance of PolicyCrypt
(Chapter 8). Finally, the thesis concludes and outlines possible future directions for
this work (Chapter 9).
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2 Background

This chapter discusses the relevant background for the privacy platform PolicyCrypt
presented in this thesis. The chapter starts with an introduction to the data privacy
landscape. Then, known secure computation techniques that help to facilitate
privacy-preserving transformations are reviewed. Lastly, the background chapter
presents data stream analytics, which is the scenario that the privacy platform
targets.

2.1 Data Privacy

The rate and volume of generated data is unprecedented and data collection tech-
niques have become more pervasive. This development is primarily driven by (i) the
realization that there is enormous value in data, and (ii) by the fact that advances
in data analytics put the privacy of an individual at risk, mainly because most of
the collected data is highly sensitive (e.g. health, location, or financial data). This
section starts by describing the status quo and later introduces existing techniques
that allow deriving valuable insight while protecting the individual’s privacy.

2.1.1 Privacy Regulations and Policies

Regulatory bodies in the European Union and California reacted to the increasing
concerns over data protection and privacy by introducing new privacy laws. Since
May 2018, all companies operating within the European Union are subject to the
General Data Protection Regulation (GDPR). While all Californians are protected
by the California Consumer Privacy Act (CCPA) since January 2020. Both of these
data protection rules aim to give people control over their data [3, 18]. Services that
fail to comply with these privacy laws run at the risk of receiving hefty fines.
A central point of the privacy regulations is that services must describe in a

privacy policy (or privacy notice) how user data is used and processed. Today, the
majority of existing privacy policies are legal statements written in natural language,
which rely on notice and consent to protect privacy. A single sentence from the
Airbnb privacy policy in Listing 2.1 gives an example that highlights the complexity
of some of the existing privacy policies. The idea of notice and consent is that a
user decides on using services based on such privacy policies.

5



2 Background

Listing 2.1: Extract from Airbnb’s Privacy Policy [14].

In jurisdictions where Airbnb facilitates the
Collection and Remittance of Occupancy Taxes
as described in the Taxes section of the

Terms of Service , Hosts and Guests , where
legally permissible according to applicable
law , expressly grant us permission , without
further notice , to disclose Hosts and Guests
data and other information relating to them
or to their transactions , bookings ,
Accommodations and Occupancy Taxes to the
relevant tax authority , including , but not
limited to, the Hosts or Guests name , Listing
addresses , transaction dates and amounts ,

tax identification number(s), the amount of
taxes received (or due) by Hosts from Guests ,
and contact information.

The next two paragraphs discuss the shortcomings of the status quo from both
the user- and service provider viewpoint.

User Privacy In combination with the paradigm of notice and consent, today’s
privacy policies lack expressiveness, scalability, transparency, and enforcement [17].
To a large degree, these problems remain unsolved even under GDPR and CCPA
because they are inherent to the current form of privacy policies written in natural
language.

• Expressiveness: In notice and consent, there is only an all-or-nothing choice
for users. There is no fine-grained mechanism that allows users to limit what
data can be used and in which form.

• Scalability: The assumption behind notice and consent is that users read
the privacy policy of each service that they use and then decides whether to
consent or to look for an alternative. A study from 2008 [68] suggests that an
average American internet user would have to invest 244 hours in reading all
privacy policies from services with which they interact within a single year.
Consequently, it is no surprise that most users skip reading the privacy policy
and directly give uninformed consent. The main problem here is not the large
number of services that people use but rather the length of privacy policies.
An experiment from 2019 shows that some privacy policies take almost 35
minutes to read [66].

• Transparency: The requirement for informed consent must be that the user
understands the privacy policy. However, evidence suggests that verbosity and
the amount of legal jargon make many privacy policies hard to understand,

6



2.1 Data Privacy

even for people with excellent education [66]. Moreover, a high-level policy
defined in human-readable language inevitably passes over details that might
be relevant. A low-level policy with all details might be too complicated for a
user to understand.

• Enforcement: The enforcement of privacy policies relies on trust in the service
provider. There is no convincing mechanism for enforcing privacy policies.
Instead, the mechanism to enforce privacy policies is based on the idea of legal
concerns over hefty fines. However, the number of data breaches reported
under the GDPR obligation to notify demonstrates that these concerns are
not sufficient. The latest published numbers show that in the first year, 89’271
data breaches were reported across Europe [19].

Privacy compliance The number of reported data breaches under GDPR is also
an indicator that services struggle to fulfill compliance with the new regulations.
Having a GDPR or CCPA compliant privacy policy is only the first step. The next
and arguably more difficult step is to also adhere to the privacy policy. The problem
highlighted by the number of data breaches is not that companies willingly violate
their privacy policy. Instead, the lack of enforcement mechanisms in combination
with access to raw data results in a situation where small mistakes in handling data
can have far-reaching consequences. The potential fines and the loss of reputation
pose a significant threat to companies.

It becomes evident that a paradigm shift is necessary because the current system
is neither adequate to provide privacy to users nor to help services fulfill compliance
regulations. The next segment discusses existing technologies that enable privacy-
preserving transformations on user data, which are the fundamental building blocks
for the new privacy paradigm proposed in the thesis.

2.1.2 Data Privacy Technologies

Two of the most straightforward privacy-preserving transformations are anonymiza-
tion and pseudonymization. The idea of anonymization is to mask personal data
by removing identifying attributes such as name or address before publishing data.
At first sight, this transformation appears to be irreversible. The idea behind
pseudonymization is similar; however, the masking of private information should be
reversible given a decryption key. However, without access to the decryption key,
this transformation also looks irreversible at first. Unfortunately, many examples
show that both anonymization and pseudonymization do not work as well as initially
thought [35,75,84]. The problem is that the combination of insensitive attributes
often acts as a unique fingerprint of a user. An attacker can link this fingerprint to
public information and, as a result, often completely reverse the transformation and
identify an individual.
Another privacy-preserving transformation is aggregation. One of the most

common phrases in privacy policies is that the service uses or shares data in aggregate
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2 Background

form. A search for the term “aggregat”, which covers both the terms “aggregate”
and “aggregation”, in the 2020 opt-out choice dataset [62] reveals that it appears in
almost half of the privacy policies (371 of 767) . However, most of the time, it is
unclear what aggregation entails. For example, even though technically, a sum of
two participants is data in aggregated form, it is intuitively clear that this form of
aggregation provides little privacy.
In general, it must be stated that aggregated data alone does not provide any

formal privacy guarantees. However, in many cases, aggregation of comparable data
over a sufficient number of participants provides practical privacy. For example,
consider a vote or an election, where this form of privacy is applied for hundreds of
years. At the very least, an aggregation over many participants preserves plausible
deniability for each individual.
Furthermore, many types of data are highly sensitive at a high resolution but

much less so aggregated over a certain period, for example, the household’s power
consumption or the number of steps of an individual. This example is a form of
practical privacy through aggregation over time.

The next section introduces a technique which can be used in situations where it
is unclear whether practical privacy via aggregation is sufficient.

2.1.3 Differential Privacy

Differential privacy (DP) provides a more rigorous notion of privacy by formalizing
the goal of protecting an individual’s privacy. Intuitively, DP preserves privacy by
ensuring that the output of the analysis remains approximately the same, independent
of whether the dataset includes the individual or not. In such a situation, the rationale
is that an outsider learns nothing new about individuals if they participate in the
database. As a consequence, individuals can participate without compromising their
privacy.
More formally, let the `1 distance between two databases x and y ‖x − y‖1 be

the measure of how many records differ between the databases. Two databases
are neighbouring if ‖x − y‖1 = 1 or in other words if they differ only by a single
record [38].

Definition 2.1 (Differential Privacy) Let O be the set of all possible outputs. A
mechanismM : D → O is (ε, δ)-differentially private if for all sets S ⊆ O and for
every pair of neighbouring databases x, y ∈ D

Pr[M(x) ∈ S] ≤ eε · Pr[M(y) ∈ S] + δ

This definition captures that a mechanism M behaves similarly on neighboring
databases.

Laplace Mechanism One of the most widely applicable mechanisms is the Laplace
mechanism because it allows answering numeric queries while preserving differential

8



2.1 Data Privacy

privacy [38]. The idea is to protect privacy by adding Laplacian noise to the query
result. For hiding the contribution of a single individual in a numeric query f , the
mechanism needs to know the magnitude by which the data of an individual can
change the function f in the worst case, as this is proportional to the amount of noise
which is necessary. The `1-sensitivity of a functionf : D → Rd captures precisely
this for neighbouring databases x and y

∆f = max
x,y∈D‖x−y‖1=1

‖f(x)− f(y)‖1

Definition 2.2 (Laplace Mechanism) Given any function f : N|X | → Rd, the
Laplace mechanism is defined as:

ML(x, f(·), ε) = f(x) + (Y1, · · · , Yd)

where Yi are i.i.d random variables drawn from the Laplace distribution Lap(∆f/ε).

The Laplace distribution (centered at 0) with scale b is the distribution with the
probability density function:

Lap(x|b) =
1

2b
exp

(
−|x|
b

)
One can show that the Laplace mechanism preserves (ε, 0)-differential privacy [38].

Gaussian Mechanism Another popular mechanism to answer numeric queries
while preserving differential privacy is the Gaussian mechanism [38]. The idea is
similar to the Laplace mechanism, but instead of adding Laplacian noise, the curator
adds noise drawn from a Gaussian distribution. In the Gaussian mechanism, the
amount of required noise for an arbitrary function f : N|X | → Rd is proportional to
its `2 sensitivity:

∆2f = maxx,y∈D‖x−y‖1=1‖f(x)− f(y)‖2

Definition 2.3 (Gaussian Mechanism) Given any arbitrary function f : N|X | →
Rd with an `2 sensitivity of ∆2f , the Gaussian mechanism is defined as:

MG(x, f(·), ε) = f(x) + (Y1, · · · , Yd)
where Yi are i.i.d random variables drawn from the Gaussian distribution N (0, σ2).

The Gaussian distribution N (0, σ2) (centered at 0) is defined by the probability
density function:

p(x|σ2) =
1√
2πσ

exp

(
x2

2σ2

)
One can show that the Gaussian mechanism is (ε, δ)-differential private for pa-

rameters σ ≥ c∆2f/ε and c2 ≥ 2 ln(1.25/δ) [38].
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2 Background

Continual Observation The initial literature on differential privacy focuses on
achieving privacy for queries running on a static database. However, this scenario
is not directly applicable to achieving differential privacy on growing databases
(i.e., streams of data). There are different notions of differential privacy on growing
databases, and the definition of a mechanism changes accordingly [59].

Definition 2.4 Let M be a mechanism that takes as input a stream prefix of
arbitrary size. Let O be the set of all possible outputs ofM. Then,M is event-level
(user-level) (ε, δ)-differentially private if for all sets S ⊆ O, all event-level (resp.
user-level) adjacent stream prefixes xt, yt, and all t, it holds that:

Pr[M(xt) ∈ S] ≤ eε · Pr[M(yt) ∈ S] + δ

For continual observations, there are also other notions of differential privacy, such
as w-event-level differential privacy, which is a compromise between event-level and
user-level differential privacy [59].

Without trusted Curator The standard model in differential privacy assumes a
trusted curator who holds all the data in a database. The curator is responsible for
performing the query and ensuring that the released result is differentially private
(i.e., running the mechanism). However, such a trusted curator might often not
be available or desirable in the distributed setting of the thesis. There are two
approaches to remove the need for a trusted curator, which are demonstrated based
on an example.

Consider the example of calculating a differentially private sum. The naive version
to achieve local differential privacy without a trusted curator is that all clients
add sufficient noise to their contributions before sending them to the aggregator.
However, when summing over all N contributions, the amount of noise is N times
as much compared to the standard-setting with a trusted curator. Consequently,
this leads to a low utility of the query.
A better alternative for such a situation is to replace the trusted curator with

a secure multiparty computation (MPC) protocol. The idea is that each of the
N participants adds only 1/N of the required noise and then performs a secure
aggregation protocol among all participants, which reveals only the sum of all
contributions. Since the sum contains N · 1/N the required amount of noise, the
sum is differentially private [12].
Note that this protocol relies on trust in other participants that they also add

their part of the noise. In a distributed setting, this full trust is usually not the case.
Instead, there is often an assumption on the fraction of trusted participants. This
assumption allows calibrating the noise to account for some colluding participants.
Further, the protocol assumes that the required noise originates from a divisible

distribution such that each participant can generate 1/N of the total noise. It turns
out that both the Laplace and Gaussian distribution are divisible.
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Theorem 2.5 (Divisibility of Laplace Distribution [60]) Let L(b) denote a
random variable drawn from Lap(x|b). Then the distribution of L(b) is infinitely
divisible. Furthermore, for every integer n ≥ 1, L(b) =

∑n
i=1[G1(n, b) − G2(n, b)],

where G1(n, b) and G2(n, b) are i.i.d random variables having gamma distribution
with PDF g(x|n, b) = (1/b)1/n

Γ(1/n)
x

1
n
−1e−x/b where b ≥ 0.

Theorem 2.6 (Divisibility of Gaussian Distribution [65]) Let Y denote a ran-
dom variable drawn from N (0, σ2). Then the distribution of Y is infinitely divisible.
Furthermore, for every integer n ≥ 1, Y =

∑n
i=1 Yi, where Yi is a i.i.d random

variable Yi ∼ N (0, 1
n
σ2).

2.2 Secure Computation

The goal of secure computation is to compute on data without revealing private
information. PolicyCrypt leverages these cryptographic techniques to ensure that a
service cannot violate user-defined privacy policies.
This section starts by covering cryptographic primitives that enable secure com-

putation on top of encrypted data. The introduction of cryptographic primitives
should further help to understand the cryptographic components of PolicyCrypt.

Subsequently, the section discusses two forms of secure computation. First, homo-
morphic encryption which targets secure computation on an untrusted server and
second, multiparty computation which targets secure computation among untrusted
parties.

2.2.1 Cryptographic Primitives

The following paragraphs present a brief introduction of three fundamental building
blocks of modern cryptography. The first two paragraphs cover block ciphers and
pseudo-random functions, which are concepts from symmetric-key cryptography, the
type of encryption that uses a single key to protect data confidentiality. The last
paragraph introduces the Diffie-Hellman key exchange, which is a form of public-key
cryptography that allows generating shared keys over an untrusted network.

Block Ciphers Block ciphers are one of the core components of symmetric cryptog-
raphy. A block cipher is a deterministic algorithm to encrypt a block of data using
a symmetric key. More formally, a block cipher is a deterministic cipher E = (E,D).
The encryption algorithm E takes a message m and a key k as input and produces
a ciphertext c as output. The decryption algorithm D reverses the encryption. It
takes a ciphertext c and a key k as input and produces a message m as output. For
block ciphers, the message space and the ciphertext space (i.e., where messages and
ciphertext respectively lie) is the same (finite) set X . To be more precise, for a fixed
key k, the function E(k, ·) is a permutation on X and the function D(k, ·) is the
inverse of the same permutation. Intuitively, the security of a block cipher relies on

11



2 Background

the property that for a randomly chosen key k, the permutation E(k, ·) should be
indistinguishable from a random permutation [21].

The most widely used block cipher is the Advanced Encryption Standard or short
AES. It operates on 128-bit blocks and supports 128, 192, and 256-bit strings as keys.
The design of AES is already quite efficient in software. Nevertheless, all major
processor vendors provide a hardware implementation to speed-up and simplify the
use of AES considerably. For example, Intel extended their instruction set with
“AES new instructions” (AES-NI) [21].

Pseudo-random Functions A pseudo-random function (or PRF) is a closely
related concept to block ciphers. PRFs are conceptually simpler objects than block
ciphers, and it even turns out that secure block ciphers are useable as a stand-in for
secure pseudo-random functions (under certain assumptions) [21]. This property is
useful because it implies that efficient AES can function as a PRF. More formally a
pseudo-random function F is a deterministic algorithm that has two inputs: a key
k ∈ K and an input data block x ∈ X ; its output y = F (k, x) with y ∈ Y is called
output data block. Intuitively, for a randomly chosen key k, the function F (k, ·)
should look like a random function from X to Y [21].

Diffie-Hellman Key Exchange The Diffie-Hellman key exchange is a form of
public-key cryptography that allows two parties to establish a secret over an insecure
channel [34]. Consider an example of two parties called Alice and Bob that want to
exchange a secret message. The area of symmetric cryptography provides algorithms
such as block ciphers that allow Alice and Bob to achieve their goal as long as they
already have a shared secret key. However, Alice and Bob can only communicate over
an insecure channel. This limitation raises the question of how they can establish
such a shared key? In 1976, Diffie and Hellman answered this question by presenting
a protocol which allows Alice and Bob to exchange cryptographic keys over an
untrusted network. The remaining part of this paragraph describes their protocol
more formally and introduces the most suitable form for applications.
Let G be a finite cyclic group of order n and a generator g ∈ G, which are both

public knowledge.

1. Alice chooses a random value a (i.e. Alice’s private-key), where 1 ≤ a ≤ n,
and sends ga (i.e. Alice’s public-key) to Bob.

2. Bob chooses a random value b (i.e. Bob’s private-key), where 1 ≤ b ≤ n, and
sends gb (i.e. Bob’s public-key) to Alice.

3. Alice computes the shared secret key gab = (gb)a using Bob’s public-key and
her private-key.

4. Bob computes the shared secret key gab = (ga)b using Alice’s public-key and
his private-key.

12
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The security of the Diffie-Hellman key exchange relies on the assumption that the
discrete logarithm is hard to compute in the group G. In other words, it must be
hard to compute the private-key a from the public-key ga. It turns out that the
group of points of an elliptic curve over a finite field is the most suitable in practice.
The main reason for this is that the best known discrete-log algorithm in an elliptic
curve group of size n runs in time O(

√
n). As a consequence, to provide similar

security as AES-128, a group size of n ≈ 2256 is sufficient [21].
An elliptic curve E defined over Fp for a prime p ≥ 3 is given by the equation:

y2 = x3 + ax+ b

Let E/Fp be an elliptic curve and let E(Fpe) be the group of points on this curve.
Given a secret integer α ∈ Zq (i.e. private-key) and a public generator point P , the
resulting point Q = αP is the public-key [21].

2.2.2 Homomorphic Encryption

After introducing the most important cryptographic primitives in the previous
section, this section considers the first form of secure computation. In 1978 Rivest,
Adleman, and Dertouzos proposed the concept of homomorphic encryption [82].
The idea of homomorphic encryption is to enable computation on ciphertexts (i.e.,
encrypted data). Since data remains always encrypted, the computation can run in
an untrusted environment without compromising confidentiality.

A homomorphic encryption scheme allows performing arbitrary arithmetic opera-
tions on ciphertexts. Let E = (E,D) denote a probabilistic encryption scheme over
(M, C,K) such that the message spaceM and the ciphertext space C are groups
under operations ⊕ and ⊗ respectively. In a (⊕,⊗)-homomorphic encryption scheme
E , it holds that for any two ciphertexts c1 = E(k1,m1) and c2 = E(k2,m2), there is
a key k ∈ K in the key space such that:

c1 ⊗ c2 = E(k, m1 ⊕m2)

In other words, there is a way to perform computation on ciphertexts before
decrypting, which leads to the same result as performing the computation on
plaintext [26].

The literature distinguishes between fully homomorphic encryption schemes (FHE)
[22,50] which support arbitrary computation, and partially homomorphic encryption
schemes (PHE) [40,51,77,83] which support only a subset of the possible computation.
Even though there is significant progress in FHE, the cost is still prohibitive for the
streaming scenario considered in the thesis [29, 37]. As a consequence, PolicyCrypt
resorts to an efficient partially homomorphic encryption scheme, based on simple
modular addition, to cope with the considered workloads.

Modulo Addition-based Encryption Modulo addition-based encryption intro-
duced by Castelluccia et al. is a simple additive homomorphic encryption scheme
relying only on lightweight symmetric cryptography [26].
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A message m is encrypted with a fresh key k and a predefined modulus M :

c = E(m, k,M) = m+ k mod M

Both the message m and the key k are integers in the range [0,M − 1].
To decrypt the ciphertext c subtract the key k:

D(c, k,M) = c− k mod M

The scheme is semantically secure if a new, unique cryptographic key is used for
each encryption [26]. Let c1 = E(m1, k1,M) and c2 = E(m2, k2,M), the encryption
scheme is additively homomorphic because for k = k1 + k2 we have that:

D(c1 + c2, k,M) = m1 +m2 mod M

2.2.3 Multiparty Computation

Another form of secure computation is multiparty computation (MPC). A secure
MPC protocol enables a group of participants with secret data, to perform a
computation on the data without disclosing their individual inputs [43].
More formally, a fixed set of participants p1, p2, · · · , pn agree on a function f .

Afterward, the participants perform an MPC protocol to compute the output of the
function together without anyone revealing their secret inputs m1,m2, . . . ,mn.

Secure Aggregation One possible function is to calculate the sum over private
inputs m1,m2, . . . ,mn:

f(m1,m2, · · ·mn) :=
n∑
i=1

mi

This problem is also known as secure aggregation and has a wide range of applica-
tions. For example, in privacy-preserving machine learning [20] or in the differential
privacy model without a trusted curator [38].

PolicyCrypt leverages secure aggregation based on symmetric additive homomor-
phic encryption to enforce aggregation-based privacy policies. In this form of secure
aggregation, each contribution is masked with a nonce [12,20].

The participants agree pairwise on a random nonce duv. If u adds this nonce to mu

and v subtracts it from mv, then the mask duv cancels out when adding up the two
inputs. As a result, the sum mu +mv is available while the individual contributions
mu and mv remain hidden. For a larger group of participants, each user u computes:

cu = mu +
∑

v∈U : u>v

duv −
∑

v∈U : u<v

duv mod M
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The aggregator then sums up the individual contributions cu, which results in the
pairwise nonces canceling out. As a result, only the sum of actual inputs remains:

z =
∑
u∈U

cu mod M

=
∑
u∈U

(
mu +

∑
v∈U : u>v

duv −
∑

v∈U : u<v

duv

)
mod M

=
∑
u∈U

mu mod M

The random masks can be defined as duv := PRF (kuv, r), where r is a changing
public value, and kuv is a shared key between u and v which can be established
through a Diffie-Hellman key exchange protocol.

2.3 Data Stream Analytics

The privacy platform PolicyCrypt targets the scenario of data stream analytics,
which is about gaining insight in real-time on data in motion. The first part of this
section introduces the streaming data model. Then the chapter proceeds to discuss
techniques and specialties when processing data within this model. Finally, the last
part is dedicated to existing streaming frameworks.

2.3.1 Data Streams

The idea of data stream analytics is to treat data as an unbounded stream of events
over time. An event (or record) usually consists of a data tuple and a timestamp.
The data tuple can be of arbitrary form and contain one or more elements, while
the timestamp typically defines an ordering of a stream.

In this model, data is usually generated by distributed data sources that can send
a new event at any time. As a result, the data streams are often highly irregular,
which means that a burst of events can follow a more extended period without an
event. For example, think of mobile phones as data sources while passing through a
tunnel without connection. After the connection is re-established, the mobile adds a
burst of events to the data stream.
The streaming model is widely applicable because almost all created data is a

continuous stream of events. For example, user click actions on websites, server logs,
messages on a social network, or sensor measurements. In reality, it is hard to find
use cases where datasets are generated all at once [56]. After introducing the data
model, the next part looks at what makes processing a data stream unique.

2.3.2 Stream Processing

Stream processing is a programming paradigm for performing computation on data
in motion. In the classical paradigm of data processing, data is stored in a database,
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and queries run against this fixed dataset. Stream processing turns this classical
paradigm around. The queries are static (i.e., fixed), and data flows through them
immediately when it arrives [91].

Most stream processing pipelines share a similar structure. They compose of three
components. First, a set of distributed data producers that generate streams of
data. Second, a broker system that offers a publish-subscribe messaging pattern to
access the streams. Additionally, the broker system is also responsible for storing the
records in a fault-tolerant and reliable way [1]. Then finally, one or multiple stream
processors running the predefined queries. The output of the queries is once more a
new data stream containing the results. Figure 2.1 shows such a typical streaming
pipeline in combination with popular systems for the different components.

Data Producer

Publish-Subscribe Messaging
Stream Processor

Queries

IoT sensor, 
mobile phone, 

car, smartwatch

Kafka Streams,
Flink, Beam, Storm

Timely Dataflow
Apache Kafka

Examples

Figure 2.1: Typical streaming pipeline with data producers, an intermediate broker
system which offers publish- and subscribe access to event streams, and
a stream processor running the static queries.

The following paragraphs discuss the concepts of time and windows that have a
central role in streaming processing.

Notion of Time As mentioned above, stream processing abstracts data as an
unbounded stream of timestamped data tuples (i.e., records). There are two major
categories for the meaning of such a timestamp. A timestamp can refer to when the
event occurred (i.e., event-time) or when the record was processed (i.e., processing-
time).
Using event-time requires that the data source attaches a timestamp to each

record. Apart from the marginally increased event size, using event-time brings the
additional challenge of dealing with out-of-order events. Assigning a timestamp at
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the source can lead to out-of-order events at the stream processor because the clocks
of the data sources are not synchronized, and events incur different transportation
delays from the source [1].

Window Operators Window operations are among the most common operations
in stream processing because they enable transformations on bounded intervals
of an unbounded stream. Window operations continuously create finite sets of
events called buckets from an unbounded event stream and then allow to perform
computations on these finite sets [56]. Figure 2.2 shows two of the most common
window types, tumbling- and sliding windows (or also called hopping-windows). For
both of them, the stream processor assigns events to buckets of fixed size based on
time.
Tumbling windows assign events into non-overlapping buckets while sliding win-

dows assign events into overlapping buckets of fixed size. Consequently, an event
might belong to more than one bucket in a sliding window [56]. Both types of time
windows usually align with the Unix epoch. As a result, a length parameter uniquely
defines a series of tumbling windows. Sliding windows require both a length and a
slide parameter. A minor detail is that the window start timestamp is inclusive and
the end timestamp (i.e., which, in turn, is the start timestamp of the next window
in a tumbling window) is exclusive.
In order to handle out-of-order events in time windows, stream processors use

concepts such as watermarks or a grace period [1, 56]. In essence, all these concepts
have an increasing stream time based on the observed timestamps. Late arriving
events are accepted if they arrive within a predefined grace period or as long as they
arrive before a watermark, which indicates that no earlier events can occur.

window  i-1

window  i+1
window  i

window  i window  i+1window  i-1

timesize

timesizeslide

Tumbling Window

Sliding Window

Figure 2.2: Schematic of tumbling- and sliding windows.
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2.3.3 Streaming Framework

The central component in many stream processing pipelines is Kafka [2] and there
is a range of different stream processor frameworks such as Flink [45], Beam [87],
Storm [47], Kafka Streams [46], and Timely Dataflow [69]. However, most of them
directly integrate with Kafka and use it as the source of data streams.
The prototype of the privacy platform PolicyCrypt also directly integrates and

operates with Kafka, which makes it compatible with many of the existing stream
processing pipelines. The next paragraph introduces the main concepts of the Kafka
ecosystem for later reference.

Kafka Kafka enables a publish and subscribe messaging pattern while storing data
streams in a fault-tolerant commit log [1]. Usually, Kafka operates on a cluster with
multiple servers (called brokers) that run in different data centers.

The core abstraction for streams in Kafka is topics, and a cluster can contain an
arbitrary number of topics. Each topic consists of one or more partitions distributed
among the available brokers. These partitions are the critical factor that makes
Kafka suitable for large volume streams generated at a high velocity. In Kafka, each
record consists of a key, a value, and a timestamp. The record key determines the
partition within a topic, and the value is an arbitrary data tuple. However, often
the value references a data schema that allows a stream processor to deserialize a
record into a more suitable form.
The Kafka ecosystem contains four core interfaces to Kafka: the Producer API

which enables clients to write (publish) records into topics, the Consumer API
which enables clients to subscribe to topics, the Streams API which is a stream
processor and the Connector API which connects Kafka to external systems such as
databases [1].

Kafka Streams Since the prototype of PolicyCrypt uses Kafka Streams for per-
forming privacy transformations, this paragraph provides a brief introduction to this
data stream processing library.

Kafka Streams directly integrates with the Kafka core and reuses many concepts.
A stream processing query is defined via the domain-specific language (DSL) or the
low-level processor API of Kafka Streams. Furthermore, the two APIs can also be
used together to define a stream processor topology. The workload of a single query
divides into tasks, similar to the concept of topic partitions. As a consequence, a
Kafka Streams application consists of a set of streaming tasks that process different
partitions of the same data stream. These streaming tasks are distributed over
multi-threaded instances of the same application that can run on different machines.
To enable stateful stream processing, Kafka Streams provides state stores that allow
applications to store and query data.

On top of Kafka Streams, the ecosystem also contains KSQL, a streaming engine
that enables a wide range of applications based on a simple query language similar
to SQL [57].
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This work presents a new system design for a privacy platform that enables the safe
sharing of data while complying with users’ privacy preferences in an end-to-end
encryption setting. To our knowledge, this is the first system design that explores
the enforcement of privacy policies with cryptography. Before describing the system
design in the next chapter, this chapter discusses related work that targets aspects
close to this work.

3.1 Privacy Policy Enforcement

Most work related to enforcement of privacy policies is manual and focuses on
compliance. Few recent works in academia and start-ups aim to automate en-
forcement. These systems, however, either rely on a trusted service or trusted
hardware [4, 17, 67,93]. Hence, these approaches do not comply with end-to-end en-
cryption. This section introduces three related systems in more detail and compares
them to PolicyCrypt.

• Privitar: The start-up Privitar provides a privacy management platform to
de-identify data and achieve regulatory compliance while permitting advanced
analytics to extract maximum value from the data [4]. However, in contrast
to this work, the platform applies privacy transformations with access to raw
data. While this approach helps with regulatory compliance, from the user
viewpoint, the enforcement of privacy policies still relies on trust rather than
cryptographic guarantees.

• Riverbed: The framework Riverbed permits building privacy-respecting web
services [93]. Users can define policies that specify whether aggregation and
persistent storage are possible, and a user can define a network whitelist for
communication. A client runs a transparent Riverbed proxy between the user
front-end and the server. The server has a trusted platform module and runs
software in a Riverbed compatible runtime (e.g., adjusted JVM, which enforces
the policies). The server attests to the proxy that the code respects the policies
by showing a proof that the code runs in such a Riverbed compatible runtime
using the Cobweb attestation system [92]. In other words, trusted hardware
automatically enforces privacy policies.

The approach of Riverbed requires that all applications run in a Riverbed
compatible runtime. This approach works well for languages that are compiled
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to bytecode and then interpreted by a runtime (e.g. Java, Python). However,
the approach does not directly translate to languages that compile to machine
code (e.g. C, Rust). As a consequence, the approach does not integrate well
into the existing system landscape.

• Towards Multiverse Databases: This work explores how to apply access policies
in a web application backend database [67]. A single database called base
universe stores all the data. Each logged-in user receives a universe on the
server, derived from the base universe using a stateful dataflow computation.
The nodes in this dataflow computation apply the defined policies such that
each user’s universe is a policy-compatible materialized view of the database.
The server runs all queries from users against their universe. This method
ensures that a user only sees data that complies with the policy.

Multiverse databases allow a service to define policies that are later auto-
matically enforced. This form of enforcement improves the status quo of
manual enforcement and simplifies compliance. The automatic enforcement
is only possible because of a policy language that allows expressing privacy
transformations in a structured form and due to the central storage of all data.
However, in comparison to this work, Multiverse databases assume a fully
trusted service that automatically enforces the defined policies.

3.2 Cryptographic Access-Control

Storing data in the cloud using end-to-end encryption gives the best level of protection
because data remains always encrypted. As a consequence, only authorized entities
with encryption keys have access. However, defining fine-grained access to data
poses a challenge in the end-to-end encryption scenario.
Among other techniques, research proposed identity-based encryption (IBE),

attribute-based encryption (ABE), predicate encryption, or functional encryption
to address these challenges. The main idea in all these schemes is that a third
party can only decrypt a subset of the data. However, all these schemes operate
in a tradeoff between expressiveness and performance. Recent systems implement
different flavours of encrypted access-control [49, 52, 61, 85, 94, 95]. Among those
systems, three examples are presented in more detail below.

• Jedi: This is a system that defines an encryption scheme that allows many-
to-many end-to-end encryption on resource hierarchies [61]. The focus lies
on a system that works on minimal hardware with severe battery constraints.
The system decouples senders from receivers by supporting a publish-subscribe
messaging pattern. Jedi supports the expiration of access by treating time as
a hierarchy and implements a form of revocation. The cryptography bases on
WKD-IBE, which is a form of attribute-based encryption.
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• Sieve: This work presents a system for the central storage of encrypted user
data in an untrusted cloud [94]. The user can define cryptographic access
policies for web services that want to use the data. A policy consists of
metadata attributes and a symmetric key, both encrypted with attribute-based
encryption (ABE). The metadata attributes define who has access to the data,
and the symmetric key is required to decrypt the object itself. The system
implements access revocation via a key homomorphism but requires an honest
server at the time of rekeying.

• Bolt: This work introduces a time series database that stores consecutive
records in encrypted chunks on an untrusted server [54]. Each record has a
timestamp and one or more tag-value pairs attached, which allows querying
the data. The time series data is encrypted using a hash-based key regression,
which, given a key, permits deriving all previous keys. As a result, the only
supported access policies define that services can access all data up to a certain
point in time. Another drawback of Bolt is that it relies on a trusted key
management server.

The area of cryptographic access-control is relevant for this work because it
considers methods to express policies and deal with encrypted data in untrusted
cloud environments. However, in cryptographic access-control, the untrusted cloud
can only be used for storage. This work requires that the untrusted server can also
perform computation in an end-to-end encryption scenario.

3.3 Encrypted Data Processing Systems

The intention behind encrypted data processing is to perform queries on data that
remains encrypted. Such an encrypted database could run in an untrusted cloud
environment while preserving both confidentiality and functionality. Over the last
decade, many designs of encrypted data-processing systems emerged. They adopt a
similar approach but target different scenarios: time series data [23], batch analytics
[79], graph databases [71], key-value stores [24], and relational databases [80, 81, 89].
The remainder of this section discusses three of those systems and highlights why
encrypted data-processing is not sufficient for this work.

• CryptDB: This work is an SQL database which runs queries on encrypted data
[81]. CryptDB encrypts columns with an onion encryption scheme. Initially,
all columns are encrypted with random encryption. However, depending on
the queries running within the database, the system strips some layers. For
example, to run a join query on a column, the system needs to strip all layers
down to a deterministic encryption layer. However, recent work highlighted
possible leakage attacks on the deterministic and order-preserving encryption
layers, which show that the system is not secure [53].
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• Seabed: The system Seabed uses symmetric additive homomorphic encryption
to enable efficient analytics over encrypted large-scale datasets [79]. Clients
write encrypted data to the server using different encryption schemes based on
the supported queries. A user supplies a query to execute on top of encrypted
data. After the computation, the user receives the result, which is still
encrypted. To decrypt the result, a user requires access to the corresponding
keys. The system leverages a key canceling technique to support efficient
in-range queries on large datasets. Additionally, the authors propose Splashe,
which is an encryption scheme that protects against frequency-based attacks
and enables the system to support group by sum and count queries.

• TimeCrypt: This work targets encrypted data-processing of time series data.
A data producer writes encrypted digests of time series data to an untrusted
server. The additively homomorphic encryption scheme, in combination with
an aggregation-based encoding, allows the server to compute statistical queries
while data remains encrypted. Due to a key canceling technique, an authorized
data consumer can decrypt the result of in-range aggregates efficiently. Further,
the work also provides cryptographic access-control that permits sharing
arbitrary intervals of the time series data or restrict access to a lower resolution.
Among all encrypted data-processing systems, TimeCrypt is the most similar
system to this work because of a related scenario and encryption scheme.
However, TimeCrypt does not have support for irregularly spaced data streams
and lacks methods to compute aggregate functions across data streams.

For this work, the research on encrypted data-processing systems is relevant because
both tackle the problem of performing the computation in an untrusted cloud
environment. However, these systems do not support the required functionality
of a privacy platform. There is no support to perform privacy policy compliant
computation over a set of users with different privacy policies. Furthermore, many
of the systems target the more traditional database paradigm instead of streaming
data.

3.4 Private Statistics

Research addressed the challenge of collecting and handling private data in three
different flavors. Some systems collect private data only in aggregated form using
techniques from secure multiparty computation. Other systems only collect dif-
ferentially private data. Finally, some systems combine the two ideas and collect
differentially private statistics of aggregated data.

The area of private statistic collection is relevant for this work because it introduces
techniques to facilitate privacy-preserving transformations on data. However, no
existing system fulfills the requirement to support aggregation across data streams
with heterogeneous user-defined privacy policies.
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3.4.1 Multiparty Computation

• Prio: This work provides a scalable system for collecting aggregate statistics
using multiple servers [32]. Prio leverages secure multiparty computation
techniques to preserve the client’s privacy as long as there is at least one
honest server. Clients split their contribution into shares, which they submit
to different servers. The servers aggregate shares from different clients before
combining their aggregate with the result from the other servers. Additionally,
Prio also includes protection against malicious clients via secret-shared non-
interactive proofs (SNIPs). There are many more systems that target the
space of private aggregate statistics [26,33,36,39,58,63,70].

• Practical Secure Aggregation for Privacy-Preserving Machine Learning: This
is a paper that introduces a secure aggregation scheme for scenarios with
large vectors of values and frequently dropping clients [20]. The scheme’s
primary application area is in federated machine learning, where the gradient
updates can contain millions of parameters. Users share their secret across
all other users using Shamir’s Secret Sharing. Consequently, the protocol is
robust as long as t out of n users do not drop out. However, this comes at a
high communication cost to distribute the secret shares. The encryption is
similar to Dream [12]; each user adds n− 1 shared masks to the message that
cancel out. An additional nonce protects the contribution of the user in case
of a dropout. In further rounds, the remaining users both lift the additional
nonces and the shares of dropped users. In the end, the server learns nothing
except the sum of the contributions of the remaining users. For the scenario of
streaming data with comparably small records, the overhead of continuously
distributing the secret shares is too large compared to the benefits.

3.4.2 Differential Privacy

• Sage: The differentially private machine learning platform [64] proposes a new
accounting method to keep track of the (ε, δ) privacy budget while training
models under continual observations. The platform, run by a trusted curator,
retires training examples with an exhausted privacy budget. Additionally,
Sage introduces an idea that addresses the privacy-utility tradeoff (i.e., how to
detect that a model trained under differential privacy well enough).

• PeGaSus: This is a system that provides differential privacy for streams
of count data [27]. A trusted curator operates three main components. A
perturber adds Laplacian noise to raw counts, a grouper partitions the stream
into continuous, uniform segments using the sparse vector technique [38] and
a smoother which combines the outputs from the grouper and perturber to
improve utility on the results. The drawback of the system is that it only
works on simple and stable counts and relies on a trusted curator.
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3 Related Work

• Rappor: This work provides differential privacy in the local model over multiple
reports [42]. It builds on ideas from Randomized Response [38]. However,
Rappor memorizes the random answers which it has already given to guarantee
resilience against an attacker which can see multiple reports. The server uses
lasso regression to learn aggregated statistics on the server.

3.4.3 Differential Privacy with Secure Multiparty
Computation

• Dream: The system Dream collects differentially private data from smart
meters [12]. From all methods to collect private statistics, Dream is the
closest to this work because of a similar secure aggregation scheme. However,
Dream does not allow users to express preferences in the form of privacy
policies. Further, Dream does not optimize for repeated transformations on
data streams, and limiting access to a lower resolution is also not supported.

• Privacy-Preserving Aggregation of Time-Series Data: This work provides
distributed differential privacy (i.e., without a trusted curator) for time series
data [88]. It leverages an additively homomorphic, Diffie-Hellman-based en-
cryption scheme which relies on solving the discrete logarithm problem. This
form of decryption is computationally expensive and only feasible for small
plaintext space. Furthermore, the authors propose to use additive noise from
a Geometric distribution, which has the advantage that it provides discrete
noise.
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4 Overview and Objectives

This chapter starts by giving an overview of the PolicyCrypt platform. Then, a
section describes the capabilities of an attacker in the considered scenario with
a threat model, before the next section presents meaningful privacy policies for
the scenario. The chapter concludes with challenges for the design of the privacy
platform PolicyCrypt.

4.1 Overview

PolicyCrypt is a platform that facilitates privacy-preserving transformations between
user data streams and an untrusted service provider. Figure 4.1 shows the high-level
system components of PolicyCrypt. A user is in control of one or more trusted data
producers and a trusted privacy controller. The untrusted service provider is in
control of a policy manager and a data transformer.
The central idea of PolicyCrypt is to put users in charge of defining privacy

policies and enforce their privacy rules and preferences via encryption. The system
design decouples the data plane from the privacy plane, to support sophisticated and
heterogeneous privacy policies. The privacy plane is responsible for organizing and
orchestrating privacy-preserving transformations while the data plane focuses only
on end-to-end encrypted data streams. Instead of encrypting data towards a privacy
policy (i.e., encrypt data such that a specific privacy-preserving transformation can be
applied to the data). PolicyCrypt encrypts data such that various privacy-preserving
transformations can be applied to the encrypted data by combining encrypted data
with cryptographic transformation tokens. This way, data sources do not need to
manipulate keys, cryptographic primitives, or use an additional encryption scheme
other than the one used to ensure data confidentiality. As a result, encrypted data
can flow as before to be stored in encrypted cloud storage.

Data Plane PolicyCrypt continuously processes data that originates from different
data producers. As mentioned above, users are in control of data producers, whereby
a user can manage multiple data producers at the same time. Data producers
interact with a client-side proxy that encrypts the data stream before pushing it to a
remote streaming platform for storage. Note that this design follows the end-to-end
encryption paradigm because the remote streaming platform only observes encrypted
data streams. At a later stage, a user or another authorized client can consume
the encrypted data stream and decrypt it locally at the end-user application. The
design corresponds roughly to the design of TimeCrypt and hence supports the
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Figure 4.1: PolicyCrypt system architecture overview.

same applications [23]. However, to enable an even broader set of applications,
PolicyCrypt introduces a privacy plane that allows the platform to perform privacy-
preserving transformations on top of the encrypted data streams. The idea behind
privacy-preserving transformations is that a service provider can utilize the private
user data streams as long as the privacy preferences of the corresponding users are
respected.

Privacy Plane In PolicyCrypt, the privacy plane consists of a privacy controller
that represents the privacy interests of the user and a policy manager that adminis-
trates the streaming queries of the service provider. Users define privacy policies
through a simple, understandable policy language that describes acceptable data
transformations. For example, “this stream must be aggregated with streams from
other users”, or “this stream can only be accessed at a 12-hour resolution”. The
policy manager of the service provider collects and manages these privacy policies.

A service provider specifies a streaming query in the policy manager that requests a
particular transformation of data streams based on their metadata (e.g. type of data,
description of the data source). The query planner of the policy manager thereupon
creates a transformation plan by matching the streaming query to available streams
that have compatible privacy policies.

A transformation plan defines a privacy transformation over a universe of streams
with compatible privacy policies. In PolicyCrypt, a privacy transformation is a
recurring computation performed on the same universe of data streams (i.e., a stream
processing computation). Figure 4.2 sketches the relation between transformation
plan, privacy transformation, and universe in PolicyCrypt. Existing transformation
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4.1 Overview

plans are executed by the data transformer that transforms private data streams in
real-time without access to the underlying raw data items. PolicyCrypt relies on
cryptographic transformation tokens that allow the data transformer to operate on
the private data streams without decrypting them. These tokens inherently enforce
compliance with per-stream privacy policies.

Privacy Transformation

Window 1

time

Window 2 Window 3
Plan

defines

Universe 1 Universe 2 Universe 3

Figure 4.2: A transformation plan defines a privacy transformation that performs a
recurring computation over an adapting universe of data streams.

Each user of PolicyCrypt operates a privacy controller, which continuously pro-
duces these transformation tokens based on the user-defined privacy policy and the
transformation plan from the policy manager. The privacy controller is an essential
component of PolicyCrypt, as it enforces cryptographically that the remote service
must comply with the user-defined privacy policies.
The separation between data and privacy planes implicates that the privacy

controller does not have access to data for generating these transformation tokens.
Instead, the privacy controller and the data producer share only a secret master
key. The data producer and the privacy controller use this master key to derive
keys for encryption and to create corresponding transformation tokens, respectively.
For transformations that span across multiple streams from different users, the
responsible privacy controllers participate in a lightweight MPC protocol to create
the respective transformation tokens. In PolicyCrypt, a privacy controller can be
located in the data producer, in an IoT gateway, in a local server, or even in a
trusted cloud service.

Applications The data transformer transforms the private streams in real-time
according to the transformation plan with the help of the incoming streams of
transformation tokens. The resulting transformed streams comply with all user-
defined policies and hence can be used without restrictions in further and more
complex stream processing pipelines to enable various applications. For example,
a health application might provide a comparison of the individual heart rate of a
user during a work-out session to the average heart rate of a group of users that
share a similar training goal. While all users can access the public information of
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4 Overview and Objectives

the average heart rate of the group, only users with the required keys can access
their heart rate.

4.2 Threat Model

The data producer and privacy controllers are controlled by a fully trusted user
in PolicyCrypt, while the policy manager and the data transformer are part of an
untrusted server.

The server follows the Honest-but-Curious security model. Hence, the server must
follow the protocol but can analyze all observed data to learn something which
violates the user-defined privacy policy.

This work assumes a public-key infrastructure (PKI) for authenticating users
participating in a privacy transformation. The PKI associates a public-key with
each identity for establishing pairwise shared secrets using the Diffie-Hellman key
exchange. Essentially, this means that an attacker can neither impersonate nor
simulate arbitrary parties.
Note that even though a user is trusted in PolicyCrypt, this does not mean

that users can violate the privacy policies of other users. More specifically, this
work assumes that the number of colluding parties is bounded by a constant. This
assumption allows for expressing guarantees about the number of non-colluding
users involved in an aggregation.
This work does not hide the message timestamps of the stream. As a result of

this leakage, an attacker might be able to infer information about an individual
data stream. However, data producers can hide the time-pattern of their data by
randomly submitting neutral messages, which provides a tradeoff between mitigating
this leakage at the cost of more bandwidth. Moreover, PolicyCrypt currently does not
defend against side-channel attacks such as volume and pattern leakage. However,
in theory, PolicyCrypt could be complemented with known techniques to mitigate
this form of leakage.

4.3 Privacy Policies

Sections 2.1 and 3.1 discussed the status quo of privacy policies and existing work
on automatically enforcing compliance. This section outlines a list of ideas for
meaningful privacy policies in the considered scenario and describes what capabilities
privacy policies should support.

4.3.1 Types

The most straightforward privacy policy defines data as either public (i.e., usable
without any restrictions) or private (i.e., not usable at all). While these two policies
should ideally always be supported, there are many possibilities in between which
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4.3 Privacy Policies

preserve the user’s subjective expectation of privacy while providing utility for a
service at the same time.
The provided list below groups presented privacy policies into three categories.

First, aggregation policies define that a service provider can only use data in an
aggregated form across multiple sources or time. Second, Differential Privacy policies
gives the user the ability to express that they want to disclose only differentially
private data, which is required to achieve formal privacy guarantees. Finally,
constrained policies reveal data only if the data meets specific criteria.

Aggregation Policies

• Resolution policies limit the access to a lower resolution of the data. For
example, this could be a daily resolution of the number of steps or a monthly
resolution of the amount of consumed electricity in a household for billing.
Another form of thinking about data resolution is to divide the time axis into
fixed-sized, non-overlapping windows, and data is disclosed only aggregated
across such a window.

• Multi-source policies reveal data only in a combined form with data from other
sources. For example, this could be that exam grades are only published once
aggregated across the whole class. Even though these aggregated results do
not provide a formal privacy guarantee, they give the user increasing practical
privacy in the number of involved data sources. This form of privacy is similar
to voting, where a single voter at least has plausible deniability.

• Multi-source resolution policies combine the ideas from resolution- and multi-
source policies. Such a policy discloses data only in an aggregated form across
multiple-sources at a certain maximum resolution. An example is that a
user might be willing to share the number of steps at an hourly resolution
aggregated across 100 people.

Differential Privacy Policies

To achieve formal privacy guarantees, a user requires privacy policies based on
differential privacy. As discussed in Section 2.1, for continual observations there
are different notions of differential privacy. As a result, a differential privacy policy
defines both the notion of differential privacy and the (ε, δ)-parameters.

• Event-level Differential Privacy assumes independence between events from a
single source. This form of differential privacy is the simplest but also with the
weakest guarantees because of the strong and often unrealistic independence
assumption.

• User-level Differential Privacy assumes that events from a single source are
dependent. This notion is the strongest form of differential privacy under
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continual observations. However, over a long time, it requires to continually
increase the noise to preserve privacy at the cost of utility.

• W-Event-level Differential Privacy assumes that events from a single source
are dependent for a certain period of time. For W = 1 and W = ∞ it is
equivalent to Event-level and User-level Differential Privacy respectively.

Constrained Policies

• Value range policies specify that the precise value can only be accessed if it is
within a predefined range. Consider a geofence example for a company with
a large warehouse. Workers might be willing to share their live location as
long as they are within the warehouse. However, outside of the warehouse, the
location should remain private.

• Granularity policies restrict access to raw data and instead only provide a
class or a category. An example of such a policy could be that users are willing
to share that they are within a specific city or in a particular street but no
further details.

• Equality policies permit to identify if two values from two different sources are
identical but not the actual value. For example, notify friends that they are
currently at the same location (e.g. sitting in the same train)

• Single-source group by policies are a mixture between constrained and aggrega-
tion policies. The idea is to support aggregation groups depending on other
fields of the event. An example would be that a user is willing to share the
average heart rate while running at different speeds.

• Multi-source group by policies are similar to the single-source version. However,
with the additional restriction to release only aggregated data among a certain
number of other users. For example, a user is willing to share the heart rate
while running at different speeds in aggregated form over multiple users.

4.3.2 Capabilities

A privacy policy’s capability specifies a feature that a privacy policy should support
in order to be useful in the considered scenario. They are an orthogonal concept to
types of privacy policies.

• Reusability of privacy policies. The policy language should support policies
defined on a logical level. This capability enables the user to reuse the same
policy for multiple fields or sources of data.

• Validity of privacy policies expresses when the privacy policy is in effect and
when it expires. This capability allows users to define planned policy updates
in the future.
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• Revocation of privacy policies means that a user can always revoke a previously
granted privacy policy. Compared to the expiration of a policy defined by the
Validity capability, revocation is an unplanned policy update.

• Entity of a privacy policy defines the service for which the privacy policy holds.

4.4 Challenges

The objective of this thesis is to design a user-centric privacy platform for the
streaming scenario that supports and enforces a useful subset of the privacy policies
presented in Section 4.3 with encryption. Building such a platform for the streaming
scenario is linked with challenges regarding privacy aspects and systems aspects. The
privacy aspects consider challenges related to a user-centric end-to-end approach to
data privacy. The system aspects examine the challenges that arise for the integration
and adoption in existing data processing pipelines.

Privacy Challenges

• Data protection and enforcement: PolicyCrypt must provide cryptographic
guarantees that access to data for all external parties is limited to a form that
complies with privacy policies. Otherwise, data always remains vulnerable to
data breaches. Moreover, the data protection must remain intact even in the
face of a subgroup of colluding users.

• Privacy policy language: A user-centric approach puts the burden of expressing
privacy on the user. Hence, it is essential to equip users with a straightforward
yet expressive privacy policy language as assistance.

• Heterogeneous privacy policies: In a user-centric approach to privacy, a privacy
platform needs to cope with heterogeneous privacy policies because the privacy
preferences might differ between two users.

System Challenges

• Resource-constrained data sources: In the considered streaming scenario,
the data sources are often resource-constrained edge devices. As a conse-
quence, they do not have the capabilities to deal with privacy policies and
corresponding transformations. Ideally, a data producer should be unaware of
any transformations on the server, and hence a change of privacy policy should
require no adjustments at the data source. Furthermore, data producers are
often unreliable, and thus privacy transformations should be robust against
dropouts.

• Scalability in the face of recurring streaming workloads: Due to the increasing
amount of generated data, the system needs to be able to scale to a large
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number of data streams. Additionally, the platform should support high-
velocity streams while limiting the overhead to support privacy transformations
in real-time. The recurring nature of streaming workloads poses a unique
challenge. While finishing a privacy transformation for some time window,
data for the next window already arrives and must be processed.

• Compatibility with existing streaming frameworks: Most services already have
an existing data processing pipeline. As a result, a compelling privacy platform
must be able to integrate within many of these data processing pipelines
seamlessly. Towards this challenge, a privacy platform should equip service
operators with a concise query language to express their requirements.
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5 Cryptographic Design

This chapter discusses the different cryptographic building blocks of PolicyCrypt. The
first section presents the design of the encryption scheme that data producers use to
encrypt data streams. Subsequently, the next section examines the available privacy
transformations on streams and explains how privacy controllers can construct the
corresponding transformation tokens to enable these transformations. Finally, the
last section introduces a new optimization of an existing secure aggregation protocol
that is tailored to facilitate recurring privacy transformations spanning over multiple
parties efficiently.

5.1 Stream Encryption

In PolicyCrypt, data producers encrypt data streams with a symmetric additive
homomorphic encryption scheme to protect data confidentiality. The encryption
scheme relies only on efficient symmetric cryptography. This property enables the
encryption of high-velocity streams even on resource-constrained edge devices. Since
the encryption scheme is additively homomorphic, an untrusted service provider can
perform addition on top of the encrypted data stream. More specifically, PolicyCrypt
applies a form of the modulo addition-based encryption scheme introduced in Section
2.2 which encrypts each message m with a new key k and a predefined modulus M :

Enc(m, k,M) = m+ k mod M (5.1)

In this scheme, encryption and decryption only consists of a single addition and
subtraction respectively. To decrypt the aggregation of multiple ciphertexts obtained
by leveraging the additively homomorphic property of the scheme, a client has to
subtract the corresponding keys:∑

i

Enc(mi, ki,M) =
∑
i

mi +
∑
i

ki mod M (5.2)

However, this form of decryption can become expensive because decryption requires
the same number of operations (i.e., sum up keys) as aggregating ciphertexts.
Hence, PolicyCrypt modifies the above encryption scheme to enable more efficient
decryptions of in-range aggregated ciphertexts.

The system supports two flavors of the optimized encryption scheme. One of them
is the encryption scheme introduced in TimeCrypt [23], which works for equally
spaced time series data (i.e., the time between two consecutive events is constant).
The other one is a new form that also supports irregularly spaced data streams.
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5.1.1 Equally spaced Data Streams

As mentioned above, PolicyCrypt has support for the encryption scheme for equally
spaced data streams from TimeCrypt.

Definition 5.1 (TimeCrypt Stream Encryption [23]) The message mi occur-
ring at the i-th time slot in the data stream is encrypted with:

Enc(mi, k
′
i,M) = mi + k′i mod M with k′i = ki − ki+1

where ki and ki+1 are fresh keys from a pseudo-random key stream {k0, k1, k2, . . . }.

In this encryption scheme, only the two boundary keys are required for the
decryption of an in-range aggregated ciphertext (Eq. 5.2) because the inner keys
cancel out:

n∑
i=0

k′i = (k0 −��k1 ) + (��k1 −��k2 ) . . . (��kn − kn+1)

Thus, decryption time is independent of the number of in-range aggregated
ciphertexts, which allows for efficient decryption of large sums of ciphertexts:

n∑
i=0

mi = Dec

(
n∑
i=0

ci, k0, kn+1, M

)
=

n∑
i=0

ci − k0 + kn+1 mod M

The above encryption scheme requires that there is a message at every time slot
(i.e., an equally spaced data stream). Otherwise, the decryption algorithm cannot
use the property that keys cancel out, and decryption becomes expensive.

5.1.2 Irregularly spaced Data Streams

Unfortunately, more often than not, the events of a data stream do not occur in
equally spaced intervals. A strawman solution for the problem could be to introduce
neutral messages (i.e., with a zero value) for every timestamp without an event and
then use an encryption scheme for equally spaced data streams. However, depending
on the load, this introduces a significant overhead both in bandwidth and processing.
As a result, PolicyCrypt requires a new modification of the symmetric additive
homomorphic encryption scheme to support irregularly spaced data streams natively.

The modified encryption scheme assumes a data stream {e0, e1, . . . , ei−1, ei, . . . }
where an event ei := (mi, ti) is a pair consisting of a message mi, which is an
integer in the range [0,M − 1], and a timestamp ti. The events in a stream are
ordered by their timestamps (i.e., a data producer creates these events in-order),
and timestamps are unique identifiers for an event. For encryption and decryption
the data producer has access to a key stream {k0, k1, k2, . . . } derived from an initial
shared master secret k using a pseudo-random function Fk (see Section 2.2). The
PRF Fk maps the timestamp ti of an event to a pseudo-random encryption key ki.

34



5.2 Privacy Transformations

Definition 5.2 (Stream Encryption) Assume a data stream {e0, e1, . . . , ei−1,
ei, . . . } with ei := (mi, ti). Given the timestamp of the previous message ti−1, the
data producer encrypts a message mi at time ti with:

SEnc(k, ti−1, ei) = (mi − ki−1 + ki mod M, (ti−1, ti))

where ki−1 = Fk(ti−1) and ki = Fk(ti).

Due to the optimized key construction and the additive homomorphic property of
the encryption scheme, the decryption of an in-range aggregated ciphertext

(ci, (ti−1, ti))⊕ (ci+1, (ti, ti+1)) = (ci + ci+1 mod M, (ti−1, ti+1))

requires only the two outer keys ki−1 = Fk(ti−1) and ki+1 = Fk(ti+1) because the
inner key ki cancels out:

ci + ci+1 mod M = mi +m2 + (−ki−1 + ��ki) + (−��ki + ki+1) mod M

As a result, even for larger in-range aggregations over more than two ciphertexts,
decryption remains efficient. More specifically, for decrypting an aggregated cipher-
text cij , which contains the sum of all messages from event ei to event ej with i < j,
the data producer only needs to subtract the two outer keys −Fk(ti−1) + Fk(tj):

SDec(k, (cij, (ti−1, tj))) = cij + Fk(ti−1)− Fk(tj) mod M

The scheme requires keeping track of the required keys for decryption; hence both
the start- and end-timestamp are encoded in the ciphertexts. This encoding permits
to always cancel keys while aggregating ciphertexts. Note that the key derivation
and canceling technique does not impact the semantic security of the encryption
scheme [23,30].

5.2 Privacy Transformations

The main idea of PolicyCrypt is that privacy controllers submit transformation
tokens, which enable a server to perform a privacy transformation on encrypted
data streams. PolicyCrypt decouples the data plane from the privacy plane. As
a consequence, the privacy controllers, which are part of the privacy plane, are
unaware of the data that is generated by the data producers in the data plane.

A privacy transformation Γ is a function that takes as input a set of transformation
tokens {τ1, τ2, . . . }, and a set of ciphertexts {c1, c2, . . . } from the participating
streams. The transformation tokens only allow an untrusted server to perform
computations on top of the encrypted streams that do not violate any of the
involved privacy policies. In theory, a transformation token τ could be an arbitrary
object which facilitates such a privacy transformation. However, in PolicyCrypt,
all transformation tokens are an element of the additive homomorphic group of
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the stream encryption Enc (i.e., an integer in the range [0,M − 1]). Currently,
PolicyCrypt supports additive transformations over time windows in a data stream
and aggregation of these windows across multiple streams.

For example, a privacy transformation for streams of heart rate data can be that
a service computes the average heart rate over one day in California.
These privacy transformations are simple yet powerful because PolicyCrypt can

support a wide range of typical streaming queries by leveraging aggregation-based
encodings. The idea behind aggregation-based encodings is that for many queries,
there exists an encoding of the input data that allows obtaining the query result
only using addition.

5.2.1 Aggregation-based Encodings

The goal of aggregation-based encodings is to evaluate a function f(x1, x2, . . . , xn)
by transforming large parts of the computation into an aggregation (Fig. 5.1). An
encoder encodes a value x as a vector ~x. Afterward, an aggregator collects an
arbitrary number of encoded vectors ~xi and sums them up element-wise. Finally, a
decoder takes the aggregated vector and converts the vector into the desired result.
Both the encoder and the decoder should be efficient.

Decoder
𝑓(𝑥 , 𝑥 , … , 𝑥 )�⃗�

Encoder
�⃗�

Encoder

Encoder �⃗�

�⃗�

𝑥

𝑥

𝑥

Figure 5.1: Leverage aggregation-based encodings to compute a function
f(x1, x2, . . . , xn) on multiple inputs xi.

The following list demonstrates existing techniques [32] of how to transform
statistical queries into aggregation-based queries:

• Sum: the encoder maps xi → [xi] and the decoder maps [
∑
xi]→

∑
xi.

• Count: the encoder maps xi → [1] and the decoder maps [
∑

1]→ n.

• Average: the encoder creates vector xi → [xi, 1] and the decoder computes
[
∑
xi,
∑

1]→
∑
xi/n.

• Variance / Standard Deviation: the encoder creates vector xi → [xi, x
2
i , 1]

and the decoder leverages the variance formula E[X2] − E[X]2 to compute
[
∑
xi,
∑
x2
i ,
∑

1]→ (
∑
x2
i /n)− (

∑
xi/n)2. For the standard deviation, the

decoder additionally takes the square root of the result.
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• Histogram: the encoder divides the range of values into a series of k intervals
{b0, b1, . . . , bk−1} called bins. A value xi which falls into the j-th bin is encoded
as a vector of size k where all elements are zero except the j-th element is
one (i.e., xi → [00, . . . , 0j−1, 1j, 0j+1, . . . , 0k−1]). The decoder is the identity
function because the aggregated vectors directly correspond to the histogram’s
bin counts.

• Max / Min: a bucketed version of minimum and maximum uses the same
encoding as the histogram. The decoder returns the maximum or minimum
bucket with a count > 0, respectively.

• Regression: Given a training set {(xi, yi)| i = 1, . . . , n} of data points,
aggregation-based encodings allows to train an ordinary least square regression
model h(x) = a1x + a0. The encoder encodes a training pair into a vector
(xi, yi)→ [xi, x

2
i , yi, xiyi, 1]. The corresponding decoding algorithm needs to

solve a small system of linear equations to obtain the model coefficients a0 and
a1 for a training set of n observations:(

n
∑n

i=1 xi∑n
i=1 xi

∑n
i=1 x

2
i

)
·
(
a0

a1

)
=

( ∑n
i=1 yi∑n
i=1 xiyi

)

5.2.2 Transformation Tokens

In PolicyCrypt, the privacy controllers create transformation tokens with access
to the respective stream encryption keys but without direct access to raw data.
Similar to the data producer, the privacy controller can derive the necessary keys
from the corresponding master secret. For transformations involving multiple parties
with different privacy controllers, the involved privacy controllers perform a secure
multiparty computation protocol to construct the transformation tokens. Using a
secure MPC protocol guarantees that the individual transformation tokens do not
reveal any keys which allow the server to decrypt messages from an individual data
stream. Currently, the privacy controller in PolicyCrypt can create three types of
tokens that build on each other.

Tokens for Window Transformation

A window aggregation for the i-th tumbling window consists of summing over all
messages with timestamps in the range [ti, ti + w) where w is the window size.
As long as data producers use the encryption scheme for irregularly spaced data

streams from Section 5.1 and additionally submit a message on each window border,
the in-range aggregated ciphertext of the window has the form:∑
s∈[ti,ti+w)

Enc(ms, k
′
s,M) =

∑
s∈[ti,ti+w)

ms − Fk(ti − 1) + Fk(ti + w − 1) mod M
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which is, due to the fact that the end of the i-th window is the start of the
(i+ 1)-th window (i.e., ti + w = ti+1), equivalent to:∑

s∈[ti,ti+1)

Enc(ms, k
′
s,M) =

∑
s∈[ti,ti+1)

ms − Fk(ti − 1) + Fk(ti+1 − 1) mod M

As a result, the required token for the i-th window transformation has the form:
τ = Fk(ti−1)−Fk(ti+1−1). The semantic security of the encryption scheme ensures
that the token τ enables the service to only decrypt the window aggregate (i.e.,
perform the defined transformation) but nothing else.

Note that in case a data producer does not have a message at the window border,
it must add an empty message. Figure 5.2 shows this procedure. The window
borders are defined as the timestamps ti− 1 and ti +w− 1. However, since a window
transformation recurs, the data producer has to add only up to a single record
per window because, as mentioned above, for consecutive tumbling windows, the
end-border of window i is the start-border of window i+ 1. These border messages
ensure that the privacy controller does not need access to raw data to determine the
required decryption key.

window  i window  i+1window  i-1

time

normal events neutral events

Figure 5.2: Irregularly spaced data stream encryption with neutral window border
messages.

Tokens for Multi-Stream Transformation

A multi-stream aggregation is an aggregation of messages within a tumbling time
window [ti, ti + w) involving multiple data streams (i.e., from different data produc-
ers).
Let the window aggregate maggri =

∑
s∈[ti,ti+1) ms be defined as the sum of all

messages in the i-th tumbling window (i.e., with a timestamp in the range [ti, ti+w))
and let kaggri = −Fk(ti − 1) + Fk(ti+1 − 1) be defined as the corresponding window
key. The aggregation of all ciphertexts from all streams in S results in the sum of
all window aggregates and the sum of all window keys for the i-th window:∑

j∈S

c(j)
aggri

=
∑
j∈S

m(j)
aggri

+
∑
j∈S

k(j)
aggri

mod M

Hence, the server must obtain a transformation token of the form τ = −
∑

j∈S k
(j)
aggri

to complete the privacy transformation and decrypt the window aggregate. However,
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the server should not learn any individual window keys k(j)
aggri from the transformation

token as this would allow him to decrypt the window aggregate of an individual
stream which is equivalent to a simple window transformation. As shown in Section
2.2, the problem of computing a multiparty sum without any participant revealing
its contribution can be solved with secure aggregation, a specialized secure MPC
protocol.
In PolicyCrypt, the privacy controllers and the server participate in a secure

aggregation protocol to privately compute the sum over the set of transformation
tokens {τ1, τ2, . . . , τ|S|} from the privacy controllers:

τ =
∑
j∈S

τj = −
∑
j∈S

k(j)
aggri

The secure aggregation protocol proceeds in three phases:

1. In an initial setup phase (performed only once), the privacy controllers, ex-
change pairwise secrets.

2. For every transformation, each privacy controller creates a transformation
token τj that hides the individual window key using the pairwise secrets.

3. The server collects all transformation tokens and computes the sum over all τj
to facilitate the privacy transformation.

Noisy Tokens

A noisy transformation can build both on single- and multi-stream window transfor-
mations. The idea is that privacy controllers add carefully calibrated noise to the
keys (i.e., submit noisy keys):

τ̃j = τj + ηj (5.3)

where ηj is noise from some arbitrary noise distribution. The goal of noisy tokens is
to support privacy transformations that produce differentially private results. In
previous work, the noise was usually added to ciphertexts rather than to decryption
keys [12, 88]. The advantage of adding noise to keys rather than adding noise to the
ciphertexts is that encrypted data remains unchanged. As a result, the same data is
reusable for encrypted storage and to facilitate one or multiple differentially private
privacy transformations.

PolicyCrypt supports an arbitrary additive noise mechanism from the differential
privacy literature, which draws noise from a divisible distribution. Another constraint
is that the mechanism cannot access data when adding the noise. Note that this
constraint prohibits, for example, the use of the sparse vector technique. However,
with the Laplacian and the Gaussian mechanism, introduced in Section 2.1, two of
the most popular differentially private mechanisms are supported.
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5.3 Secure Aggregation

This section aims to describe the employed secure aggregation protocol of PolicyCrypt
to build transformation tokens over multiple parties.
The requirement for the protocol is that, (i) it remains lightweight in terms of

computation for privacy controllers even for transformations involving many parties,
(ii) it can be efficiently repeated with similar parties. Furthermore, (iii), it must be
robust to dropped parties. Based on these requirements, PolicyCrypt builds on the
symmetric secure aggregation protocol from Ács et al. [12]. Their protocol integrates
well with the design of the transformation tokens as it relies on the same additive
homomorphic encryption scheme from Section 5.1. Even though Ács et al. provide
an optimization compared to a Strawman solution, their protocol does not optimize
towards recurring execution. As a result, PolicyCrypt proposes a new optimized
version tailored to the specific requirements. In a setting with 10k parties and 2k
repetitions, PolicyCrypt results in a 55x and 96x speedup compared to Dream from
Ács et al. and the Strawman.

The remainder of this section outlines the PolicyCrypt optimization of the secure
aggregation protocol. In the first part, the protocol introduction from Section 2.2 is
supplemented with a reformulation in terms of PolicyCrypt. Afterward, a paragraph
reframes the complexity of the protocol as a graph problem, which helps to reason
about possible optimizations. Finally, the last part of the section builds up the
PolicyCrypt optimization starting from a Strawman and the original formulation by
Ács et al..

Privacy Transformation via Secure Aggregation Let P be a set of N privacy
controllers where each of them has a token τp. Remember that the goal is that the
server computes

∑
p∈P τp without learning the individual inputs τp.

The protocol from Ács et al. realizes this by hiding the individual inputs with a
special nonce kp which has the property that the sum of all nonces is

∑
p∈P kp = 0.

As a result, the sum of all encrypted inputs is equal to the sum of inputs:∑
p∈P

τp +
∑
p∈P

kp︸ ︷︷ ︸
= 0

mod M =
∑
p∈P

τp mod M

Privacy controllers construct the nonces from pairwise shared dummy keys dp,q,
which they share with the other controllers. More specifically, privacy controller p
adds dp,q if p > q and otherwise subtracts dp,q from his input:

kp =
∑

q∈P: p>q

dp,q −
∑

q∈P: p<q

dp,q mod M

Secure Aggregation Graph This paragraph introduces a graph formulation that
models the complexity of the protocol. Let the secure aggregation graph G := (V,E)
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model the symmetric protocol with N parties. The set of vertices V represents the
involved parties (|V | = N), and the set of edges E denotes the pairwise canceling
masks.

(a) Strawman (b) Dream (c) PolicyCrypt

Figure 5.3: Graph representation of different secure aggregation approaches.

In the presence of colluding nodes, there is no better option than to aggregate
the sum of non-colluding clients securely. The reason for this is that the server can
always subtract the contributions from colluding clients from the total sum, which
only leaves the sum of non-colluding clients.

PolicyCrypt assumes that colluding nodes are indistinguishable from non-colluding
nodes. However, the total number of colluding nodes is bounded by a constant
parameter 0 < α ≤ 1 which guarantees at least n ≥ α ·N non-colluding nodes.

More formally, let the colluding and non-colluding nodes be denoted by V − and V +

respectively (V = V + ∪ V − and V + ∩ V − = ∅) and let E+ := {(u, v)|u ∈ V + ∧ v ∈
V +} denote the set of edges for which both incident vertices are non-colluding
(E− = E \E+). The pairwise dummy keys which involve at least one colluding node
serve no purpose for security. Consequently, removing all colluding nodes from V −

along with their edges E− from the graph G does not affect the aggregation’s security.
This leaves the graph consisting only of non-colluding nodes G+ := (V +, E+) with
|V +| = n, which is relevant for secure aggregation.

The semantic security of the encryption scheme for generating the pairwise masks,
ensures that the aggregation is secure as long as the graph of non-colluding clients
G+ := (V +, E+) is connected (i.e., there is only a single connected component).
Given that the graph is connected, an attacker cannot isolate a subgroup of non-
colluding clients to reveal the aggregate of the smaller subgroup. As a result, the
only option to decrypt a sum of values is by adding up all contributions. Otherwise,
at least a single mask does not cancel out.

5.3.1 Strawman

The strawman solution for performing secure aggregation among N nodes based
on pairwise canceling masks involves sharing a dummy key with all N − 1 other
nodes. As a result, the secure aggregation graph G := (V,E) forms a clique, which
leads to an overall complexity of O(N2). This N2 is an upper bound on the number
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of required edges because, as previously shown, as long as all non-colluding clients
form a single connected component, the aggregation is secure.

From the perspective of each participant, the time complexity is O(N) because all
participants have to evaluate a PRF N − 1 times and add together N − 1 dummy
keys. In terms of space complexity, each participant needs to store all N − 1 shared
keys.

5.3.2 Dream

With the goal of reducing the O(N2) complexity, Ács et al. propose a distributed
protocol for randomly selecting a subset of edges Ec ⊆ E such that if node vi selects
vj then node vj also selects node vi [12].

They leverage the pseudo-randomness of a PRF to create this random graph. More
specifically, vi selects vj if PRF (kij, r1) ≤ c for a constant threshold c, where r1 is a
changing public value. As a result, each edge is included with probability p = c

2128

assuming a 128-bit output size of the PRF. The process of creating a random graph
where each edge is independently present with a fixed probability p is also known as
the Erdős–Rényi model G(n, p).

An additional neat property from their process is that an attacker does not know
the structure of the graph G+ := (V +, E+) among the non-colluding nodes and
consequently cannot target specific nodes to break the graph in smaller components.
In order to prevent leaking more than one value in the unlikely event that an

attacker manages to control all neighbors of a non-colluding node, the selected nodes
change in every round by repeating the selection process.

However, this leads to a problem that almost nullifies the benefits of having a lower
degree in the graph. To select the neighbors, each node has to evaluate the PRF
N − 1 times. Let us assume that ` << N nodes were selected. Consequently, the
node has to re-evaluate the PRF among all ` selected nodes with a different public
changing value r2 to generate the dummy key. In total, this leads to N − 1 + ` PRF
evaluations for every round, which is even more than in the Strawman version. The
only benefit is that now only ` instead of N − 1 dummy keys need to be added up.
As a result, from the perspective of each participant, the time complexity remains
O(N). Additionally, the space complexity remains O(N) since each participant
needs to store all N − 1 shared keys.

5.3.3 PolicyCrypt Optimization

The idea behind the optimization in PolicyCrypt is to reduce the number of PRF eval-
uations by using the output of a single evaluation more efficiently. More specifically,
the output of the PRF constructs W random graphs G(n, p) via the Erdős–Rényi
model instead of only one for the use in later rounds.
Before exploring how the PolicyCrypt optimization works, this part starts by

previewing a result from the evaluation in Section 8.4 to motivate the optimization.
The effect of the PolicyCrypt optimization is that for W rounds, with N participants
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and expected number of selected neighbors ` << N , the optimization must evaluate
the PRF only N − 1 +W · ` times compared to W · (N − 1) and W · (N − 1) +W · `
in the Strawman and Dream respectively. Note that the large N is only an additive
factor in PolicyCrypt while it is to a multiplicative factor in both the Strawman and
Dream.

Sharp Connectivity Threshold Recall that the requirement for a secure aggre-
gation is that the non-colluding nodes form a single connected component, which
means that no part of the graph is isolated. In the Erdős–Rényi model, there are
a fixed number of vertices n, and each edge is in the graph with probability p
independently. In 1960, Erdős and Rényi studied the probability that the graph
G(n, p) is connected as a function of p [41]. Intuitively, for very small p, G(n, p)
consists of mostly isolated vertices, and for large p, G(n, p) is connected with high
probability. It turns out that the change from disconnected to connected with high
probability is quite sudden at the critical threshold pc:

pc =
ln(n)

n

If p is slightly above the threshold, that is p ≥ (1 + ε)pc for some ε > 0, then the
probability that the graph is connected converges to 1 as n → ∞. One can show
(details in A.1) that the probability that a specific graph G(n, p) is disconnected is
bounded by:

P [G(n, p) is disconnected ] ≤
n/2∑
j=1

(
e · n
j

(1− p)n−j
)j

Let BW be the event that at least one of the Erdős–Rényi graphs is disconnected.
There are W random graphs and let Ai be the event that the i-th Erdős–Rényi
graph Gi(n, p) is disconnected. Applying the union bound results in:

P (BW ) = P (
W⋃
i=1

Ai) ≤
W∑
i=1

P (Ai) = W · P (Ai)

Given a maximal error δ and an aggregation size n, this allows to identify a W
and a p such that the probability of failure (i.e. that not all W graphs are connected)
is bounded from above by δ:

P (BW ) ≤ W · P (Ai) = W ·
n/2∑
j=1

(
e · n
j

(1− p)n−j
)j
≤ δ

Graph Construction from PRF The following paragraph describes a distributed
protocol for generating W secret random graphs via the Erdős–Rényi model among
n vertices based on evaluating a PRF. Towards this goal, the protocol divides the
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output of the PRF into k-bit segments. For the moment, the explanation focuses
only on a single segment (e.g. the first k bits).
As in Ács et al. a node u evaluates PRF (kuv, r1) for every other node v to

determine the random graph structure. However, instead of only constructing a
single random graph, the goal is to construct w = 2k random graphs. Towards this,
the protocol assigns edge (u, v) to the i-th graph where i is the number encoded
in the k-bit segment of the PRF output. The probability that a graph contains a
specific edge is 2−k. After repeating the procedure with every node, a vertex has in
expectation a degree of N−1

2k
.

This process generates w graphs Gi(n, 2
−k) according to the Erdős–Rényi model.

Note that the graphs are highly dependent on each other since each edge can only
be present in one of the w graphs. Nevertheless, each graph individually satisfies the
requirements for an Erdős–Rényi graph (i.e., every edge is present with probability
p = 2−k independent of the other edges of the same graph).

Remember that so far, the protocol only used a k-bit segment of the PRF output
to generate w = 2k graphs. In a PRF output size of 128 bits (e.g. AES), there
are b128

k
c segments and hence using all segments allows to generate W = b128

k
c · 2k

graphs.
The target is to generate as many graphs as possible (i.e., large k). A large k

leads to both more rounds and a smaller expected node degree in each round, which
improves performance. However, increasing k also leads to a higher probability that
a graph of non-colluding nodes is disconnected, which results in a smaller aggregation
size. Given the number of members N , the fraction of non-colluding members α,
and a maximum error threshold δ, the optimal k is the solution to a constrained
optimization problem. Let n = α ·N , p = 2−k and find k which maximizes

W = b128/kc · 2k

subject to the constraint

W ·
n/2∑
j=1

(
e · n
j

(1− p)n−j
)j
≤ δ

Note that since the space of possible k is very small (i.e., integers in between 1
and the PRF output size), PolicyCrypt finds the optimal k via brute-force. As in
the protocol of Ács et al., the same random graph can stay the same over t rounds,
which would result in t ·W rounds in total.

In order to get an idea of how many rounds (i.e., random graphs) are possible
from performing the procedure a single time, Table 5.1 shows a few examples of
different numbers of participants to demonstrate the effect of the optimization. The
number of graphs W and the expected degree of each vertex E[degree] holds under
the assumption that up to half the nodes are colluding α := 0.5 and a probability of
success higher than 1− δ with δ := 1× 10−7.
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N W E[degree]
100 256 49.5
1000 512 62.4
5000 1344 78.1
10000 2304 78.1

Table 5.1: Expected degree of a node in a secure aggregation graph for different
number of participants N and for different number of rounds W .

Mapping between Privacy Transformation and Secure Aggregation Graph
During a privacy transformation, a participating privacy controller must always
know which graph to use. This fact requires a mapping between the window of
a privacy transformation and a secure aggregation graph. In PolicyCrypt, this is
achieved by dividing a privacy transformation into epochs consisting of W rounds.
In combination with an enumeration of the windows in a privacy transformation, this
results in a direct mapping. To clarify, consider an example. Assume that an epoch
consists of W = 200 rounds, then the 205-th repetition of the privacy transformation
uses the 5-th graph of the second epoch.
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This chapter presents the system design of the privacy platform PolicyCrypt intro-
duced in Chapter 4. The chapter starts by describing how data producers can write
their data streams into the privacy platform. This description is followed by a section
that outlines a simple privacy policy language that allows users to express their
privacy preferences, and a query language for service providers to define streaming
queries. The next two sections outline the policy manager and the privacy controller,
which, based on these two languages, provides an interface for service providers and
users, respectively, to interact with PolicyCrypt. Further, the privacy controller
is responsible for enforcing user-defined privacy policies with encryption while the
policy manager is responsible for forming privacy transformations based on streaming
queries. The final section describes the data transformer, which is essentially a job
running in a streaming platform that performs the privacy transformation on top of
encrypted data streams.

6.1 Writing Data

The data sources in PolicyCrypt are the data producers. Data producers write
data streams through a client proxy module to an untrusted cloud infrastructure.
However, before sending the records, the proxy module encrypts the records with a
partially homomorphic encryption scheme that allows protecting confidentiality while
preserving utility by enabling an untrusted server to perform certain computations
on the encrypted data.
Remember that PolicyCrypt has a strict separation between the data- and the

privacy plane. The data producer is part of the data plane and thus is entirely
unaware of the privacy layer and is not involved in any transformation. This design
has the advantage that the proxy module remains lightweight and does not require
any interactions with the server other than sending the data. This approach is similar
to existing stream processing pipelines. The only additional step performed on the
data producer is to encrypt the data. However, this is also not a problem because
the encryption scheme only relies on lightweight symmetric cryptographic operations.
As a result, the client proxy module also runs on resource-constrained edge devices.
Overall, the proxy architecture of PolicyCrypt is similar to the architecture used in
TimeCrpyt [23].

This section begins by describing how to register a new data stream on the
PolicyCrypt platform. The remaining part of the section explains how the data
producer encodes and encrypts data before writing it into the platform.
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Registration For setting up a new data producer, the user has to register the new
data stream on the Privacy Controller API. With the stream registration, the user
generates a master secret and assigns a new data producer to the privacy controller.
After the registration process, the proxy receives the master key and additional
parameters for encryption and data serialization from the generated setup file.

Data Record Serialization The server in PolicyCrypt supports encrypted aggre-
gates based on addition but no multiplication. Despite this limitation, PolicyCrypt
supports a wide range of statistical queries by leveraging the aggregation-based
encodings introduced in Section 5.2.
The proxy module serializes each attribute of the data record into a vector of

statistical values based on the configuration file obtained during the setup. In the
default configuration, an attribute v is encoded as a vector (v, v2, 1) to support sum,
average, and standard deviation.

Encryption The proxy module encrypts the data records with the symmetric
homomorphic encryption scheme from Section 5.1 using the master secret from the
setup phase. As a result of the separation between the data plane and privacy plane,
the privacy controller requires a contract with the data producer that enables the
privacy controller to derive the correct window keys without communicating with
the producer.
Towards this goal, the proxy module receives a base transformation window size

∆ (e.g. a minute) for the stream during the setup phase. On each border timestamp
of this base window size (i.e., the last timestamp within the window), the proxy
module must submit a ciphertext to the service. If there is no data produced at
this specific point in time, the data producer encrypts a neutral value that does not
affect the statistics. As a result, the privacy controller can derive transformation
tokens for all window sizes that are a multiple of the base window size ∆ without
access to the data stream because the contract guarantees that the ciphertexts are
present. Moreover, the data transformer interprets the border events as commit
messages from the data producer, which indicates that the data of this window is
complete. These commit messages are a mechanism that allows the data transformer
to detect a producer that is currently unavailable.

Besides, PolicyCrypt supports submitting neutral ciphertexts at random points in
time. Since the server can observe the timing of the events, these neutral ciphertexts
are useful for hiding the exact data generation pattern. Furthermore, in a multi-
stream windowed-aggregation where not all data producers have a value, the neutral
ciphertexts can obfuscate the origin of the data.

6.2 Defining Privacy Policies and Queries

PolicyCrypt enables users to define privacy policies for their data streams through the
Privacy Controller API. It is in the interest of users to share data only on their terms,
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which might differ depending on the type of data. As a result, each data stream
in PolicyCrypt has an attached privacy policy that defines what transformation
preserve privacy in the viewpoint of the user.
On the other side is the service provider with interest in executing queries on

top of the data streams. PolicyCrypt provides a framework to reconcile the two
interests. Towards this goal, the framework offers a language to express privacy
policies and a language to express simple queries (i.e., privacy transformations).
Further, PolicyCrypt provides a method to match queries to streams with compatible
privacy policies. Finding a matching is only possible due to a data stream schema,
which is the foundation for both defining privacy policies and queries.

First, this section introduces the data stream schema, followed by the privacy
policy language and the streaming query language of PolicyCrypt. At the end of the
section, a small case study illustrates the interplay between the three components.

6.2.1 Data Stream Schema

The data stream schema describes the characteristics of a data stream and provides
sensible options for privacy policies. In PolicyCrypt, the service provider is responsi-
ble for defining such a data stream schema. However, also an independent governing
body or a standardization committee could define the schema.
As Listing 6.1 shows, each schema has a unique name and consists of three

major parts: metadata attributes, stream attributes, and possible policy options.
PolicyCrypt defines schemas in the Yaml format [76] and uses the Avro schema
language to define types of attributes [44].

Listing 6.1: Data Stream Schema Structure

name: <schema id>
metadataAttributes:
- name: <attribute id>

type: <attribute type>
streamAttributes:
- name: <attribute id>

type: <attribute type>
aggregations: <attribute encodings >

streamPolicyOptions:
- option: <option type>

<option params >

Metadata Attributes The metadata attributes describe static fields that remain
constant for a more extended period (i.e., they are not regularly changed). The
service uses metadata attributes to group the available streams into reasonable
populations. For example, a service might want to know the average number of
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steps per day for people living in rural areas. Hence, the service filters streams based
on the geographic area meta-attribute. In some cases, these metadata attributes
potentially reveal sensitive information. To mitigate this problem, in many cases,
it is sufficient to get a class rather than a precise value. For example, instead of
revealing the age, users might be willing to disclose that their age is within the
age range of 60-70 years. However, if this is not sufficient, the user always has the
option to omit sensitive attributes. The data schema supports enums and arbitrary
primitive types from the Avro schema language for metadata attributes.

Stream Attributes The stream attributes are the schema of the actual data stream.
Remember that a data stream is an unbounded stream of events where each event
consists of a timestamp and a data tuple. The stream attributes define the contents
of such a tuple. Each element or field of the tuple has a name and a primitive type
from the Avro schema language. Due to the homomorphic encryption scheme in
PolicyCrypt, most fields are integers. However, other types are available, but with
no support for private transformations on encrypted data. Instead, elements without
integer types can either be public or private. In addition to a type, a stream attribute
also defines a set of possible aggregations. They determine the aggregation-based
encodings used during the stream encryption. By default, the encoding consists of
sum, count, and the sum of squares, which enables common statistical queries, as
shown in Section 5.2.

Privacy Policy Options A schema defines reasonable privacy policy options for
stream attributes that correspond to the privacy transformations on encrypted data
streams introduced in Section 5.2. PolicyCrypt supports the following privacy policy
options ordered from the least to the most restrictive:

• Public is the least restrictive option and is available for all stream attributes,
including non-integer types. The semantics of the public option is that for the
user, the data is not sensitive, and thus all transformations are possible.

- option: public

• Window corresponds to the privacy transformation that limits the resolution
of the data. The option has a single parameter window size, which is a list of
choices for the minimal allowed window size.

- option: window
window: <window size options >

• Aggregate is the counterpart of the privacy transformation that aggregates
data from multiple streams in windows. The parameters of the aggregate
option are a minimum window size and a minimum aggregation size. The
window size is a list of choices that define the highest permitted resolution.
For the aggregation size, it is possible to limit the choices to a discrete list
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of aggregation sizes (e.g. 100, 200, 500, 1000) or predefined levels (e.g. low,
medium, large) with implicit aggregation sizes.

- option: aggregate
client: <client aggregation sizes>
window: <window size options >

• Noise aggregate corresponds to the privacy transformation that uses noisy
tokens to produce differentially private results. The option takes as parameters
both the notion of differential privacy and the (ε, δ)-budget.

- option: dp
notion: <dp notions >
epsilon: <dp epsilons >
delta: <dp deltas >

• Private is the default option for all stream attributes including non-integer
types. The semantics of the private option is that this data cannot be used for
any transformation. This option is the most restrictive, and stream attributes
with this privacy policy are only used for encrypted storage.

- option: private

6.2.2 Privacy Policy Language

Apart from header information that defines origin, destination, and when the privacy
policy is valid, a privacy policy in PolicyCrypt consists of two parts that build on
the data stream schema. (i) A privacy policy contains values for the metadata
attributes defined in the data stream schema, and (ii) a privacy policy selects a
privacy configuration based on the available options from the data stream schema.

Header The header of a privacy policy contains a userID, which identifies the
owner of the stream. In PolicyCrypt, the hash of the user’s public-key represents an
identity. However, any public-key infrastructure (PKI) compatible label is usable
as long as the identity always maps to a public-key. Moreover, each stream has a
unique streamID within the namespace of the user. The serviceID identifies the
service owner for whom this policy applies. Finally, the header ends with a validity
tag that defines the time frame for when the policy is in effect. In case the policy is
valid until further notice, the to tag can also be left empty.
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Listing 6.2: Privacy Policy Structure

userID: <user id>
streamID: <stream id>
serviceID: <service id>
validity:

from: <valid from timestamp >
to: <valid to timestamp >

stream:
schema: <schema id>
metadataAttributes:
- <attribute id>: <value>
privacyConfiguration:
- <option type>:

<option param >: <value>
attributes: <stream attributes >

Stream Configuration Under the stream tag, the policy defines which data schema
the policy belongs to. The metadataAttributes tag contains a list of key-value pairs
that define metadata of the stream. Only the metadata attributes defined in the
schema are supported. The policy ends with the actual privacy configuration for
the stream attributes. The privacyConfiguration tag contains a list of the selected
privacy options from the schema, including the chosen parameters. The attributes
tag under every selected option defines the stream attributes to which this policy
applies. Note that this arrangement allows both defining multiple privacy policies
for the same stream attribute and assigning the same privacy policy to multiple
stream attributes.

6.2.3 Stream Query Language

The query language of PolicyCrypt builds on KSQL [57], an SQL-like query lan-
guage for expressing continuous queries on data streams. A prototypical query in
PolicyCrypt has the following structure:

CREATE STREAM <stream name> (<stream attributes >) AS
SELECT <UDFs with stream attributes >
WINDOW TUMBLING (SIZE <time>, GRACE PERIOD <time>)
FROM <stream schema > BETWEEN <range>
WHERE <metadata attribute predicate >

This query creates a new privacy policy compliant stream which has a name and
a set of stream attributes. The select clause applies user-defined functions (e.g. sum,
avg, count) to stream attributes from the stream schema. The window clause defines
the window of the privacy transformation. The from clause defines the schema type
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over which this query runs, and additionally, it provides the possibility to set a
minimum and a maximum on the number of required streams. The where clause
allows defining predicates on the metadata attributes to filter out streams.

The PolicyCrypt query language is designed to offer a simple set of transformations
to create privacy-preserving data streams that are guaranteed to comply with the
user-defined policies. The reason for this design choice is that PolicyCrypt intends
to serve as the first step in a typical streaming data processing pipeline. Further
and potentially more complex queries can then run on top of the privacy-preserving
data streams using KSQL or an arbitrary other stream processing engine.

User-Defined Functions The KSQL query language provides a concept called
user-defined functions (UDF) to perform more complex and custom operations on
data streams [57]. They are available within the select clause of a query. PolicyCrypt
leverages UDFs to build a decoder for the aggregation-based encodings, which
improves the compatibility with existing stream processing pipelines. Table 6.1 lists
the user-defined functions currently integrated in PolicyCrypt.

Function Description Default
sum(x) windowed sum of the stream attribute x X
avg(x) windowed average of the stream attribute x X
count(x) number of events within a window X
stddev(x) standard deviation of attribute x within a window X
var(x) variance of attribute x within a window X
hist(x) histogram of counts in a window for stream attribute x
reg(x,y) regression coefficients trained on data in this window
max(x) max bucket of a stream attribute x within window
min(x) min bucket of a stream attribute x within window
sumdp(x) differentially private sum of the stream attribute x

Table 6.1: User-defined functions supported by PolicyCrypt. The last column shows
which UDFs are available by default (i.e., without a schema annotation).

Time Window The query language of PolicyCrypt has support for tumbling- and
hopping-windows, which were both introduced in Section 2.3. A tumbling window
requires a size parameter that determines the length of the window and a grace
parameter that specifies how long to wait for out-of-order records.

WINDOW TUMBLING(SIZE <time>,
GRACE PERIOD <time>)

A hopping window also requires a size parameter and a grace parameter. However,
additionally, it takes a slide parameter that determines how much the window
advances in every step.
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WINDOW HOPPING(SIZE <time>,
ADVANCE BY <time>,
GRACE PERIOD <time>)

Tumbling windows directly correspond to the window concept in privacy policies,
which limits the data resolution. Such a direct counterpart does not exist for
hopping windows. However, it turns out that the query language can support
hopping windows by the insight that for addition-based aggregation, the output of a
hopping window can be emulated by combining the results from a set of tumbling
windows as long as the size of the hopping window is a multiple of the slide.

Filtering The details on how PolicyCrypt matches the available streams to the
queries are described in Section 6.3. However, the PolicyCrypt query language has
three mechanisms to filter and constrain the choices of streams:

• In the from clause a query can define a range on the number of streams.

FROM <stream schema > BETWEEN <range>

For example, a range BETWEEN 100 AND 200 specifies that the query requires
between 100 and 200 streams to be reasonable.

• A where clause filters the available streams based on the metadata attributes
of the streams.

WHERE <metadata attribute predicate >

For example, WHERE age=’old’ AND region=’California’ specifies that the
query only wants to include streams from old people in California.

• A group by clause categorizes the available streams based on a metadata
attribute. Defining a group by clause in a query results in a privacy transfor-
mation per class in the group by attribute.

GROUP BY <metadata attributes >

For example, assuming the metadata attribute age has three classes (young,
middle-aged, old), GROUP BY age specifies that the query should combine
streams into the three available groups. As a result, three separate privacy
transformations are formed.

6.2.4 Case Study

The following case study illustrates the interplay of stream schema, privacy policy,
and streaming query based on a medical sensor application. The medical sensor
stream has age and region as metadata attributes and heart rate and heart rate
variability (hrv) as stream attributes. The stream schema defines that either a
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stream attribute is private or that it is meaningful to define an aggregation among a
medium or large group of streams over a window of either one or four hours.

The displayed privacy policy selects the aggregation privacy option for the heart
rate and defines that the aggregation must be performed over at least a one hour
window and with a medium-sized group of streams. The hrv attribute remains
private. The service provider defines an aggregation query to find the average heart
rate over one hour involving up to 1000 streams from the group of older people in
California.

Listing 6.3: Stream Schema
name: MedicalSensor
metadataAttributes:
- name: age

type: [enum , optional]
symbols: [young , middle , old]

- name: region
type: string

streamAttributes:
- name: heartrate

type: integer
aggregations: [var]

- name: hrv
type: integer

streamPolicyOptions:
- option: aggregate

clients: [medium , large]
window: [1hr , 4hr]

- option: private

Listing 6.4: Privacy Policy
userID: 2474 b75564b
streamID: 235632224234
serviceID: healthsensorapp.com
validity:

from :2020 -04 -20 T17 :42:02+02:00
to: 2021 -04 -20 T17 :42:02+02:00

stream:
schema: MedicalSensor
metadataAttributes:
- age: old
- region: California
privacyConfiguration:
- aggregate:

clients: medium
window: 1hr
attributes: [heartrate]

- private:
attributes: [hrv]

Listing 6.5: Streaming Query
CREATE STREAM HeartRateCaliforniaOld (heartrate) AS

SELECT AVG(heartrate)
WINDOW TUMBLING (SIZE 1 HOUR , GRACE PERIOD 5 SECONDS)
FROM MedicalSensor BETWEEN 1 AND 1000
WHERE region = ’California ’ AND age = ’old’

6.3 Policy Manager

Section 6.2 introduced the privacy policy language, the query language, and the
data stream schema. This section describes how the policy manager, operated by
the service provider, uses the three components to organize privacy policy conform
transformations on data streams. On a high level, the policy manager is responsible
for matching the privacy interests of users with interest in specific queries from the
service provider.

The policy manager in PolicyCrypt consists of two parts, a query planner, which is
responsible for collecting privacy policies and providing a query interface for service
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administrators, and a transformation manager which is responsible for orchestrating
the data transformers that execute the queries. All communication between the
policy manager and the user goes over the privacy controller.

6.3.1 Query Planner

The job of the query planner is to parse the queries and find a match between the
queries and the available streams without violating any privacy policy. Both privacy
policies and queries refer to one of the data stream schemas maintained by the
query planner. Note, the policy manager is not responsible for enforcing privacy
policies. Nevertheless, the service provider’s interest is that the query planner finds a
matching that does not violate any privacy policy. Otherwise, the privacy controllers
responsible for enforcing the violated policies, do not participate in the query. As a
result, the query does not execute successfully.
The query planner processes the queries in two phases. In the first phase, the

query planner filters the available streams based on the schema type in the from
clause, and the metadata attribute predicate in the where clause of the query. The
resulting filtered set of streams contains all available candidates for the query.
In the second phase, the query planner checks the privacy policy of each stream

for compliance. At this moment, the query planner drops streams that do not offer a
privacy policy that is compatible with the query. How to check privacy compliance
optimally is non-trivial, as finding an optimal matching between a set of queries
and a set of streams is a complex combinatorial optimization problem with several
possible metrics to optimize. For example, both minimizing or maximizing the
number of streams in a single query might be a reasonable goal for a service provider.
More streams per query lead to more meaningful results. However, at the same time,
the service might need to follow a very restrictive policy to form such a large group.
Instead, the service provider could get more fine-grained data access by excluding
some streams with strict policies. However, this is only one example; further metrics
to optimize could be the number of possible queries or prioritize compliance with
more complex queries.
PolicyCrypt currently applies a simple greedy matching strategy but can be

extended with more advanced approaches. The simple matching strategy considers
only one query at the time, checks that the window size defined in the privacy
policy is compatible, that the group size exceeds the requested size, and in case of a
differential privacy query that the privacy budget is sufficient.

A data stream can only be matched to one query and is removed from the set of
queryable streams if the stream is part of a transformation. This restriction ensures
that an attacker cannot combine outputs from different transformations to violate
privacy policies. Consider two separate aggregation transformations over two almost
identical sets except that Alice is only in one of the sets. By subtracting one result
from the other, an attacker can obtain the individual input of Alice.

The constraint of a single transformation per stream limits the number of transfor-
mations running at the same time. However, the service administrator can define a
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range on the number of streams required for a meaningful query in the from clause.
If the number of compatible streams exceeds this limit, the query planner removes
the streams with the least restrictive privacy policies. With these limits, the service
has more control over the number of streams that remain available for later queries.

In PolicyCrypt, the matching between queries and streams is called a transforma-
tion plan. The transformation plan consists of the query itself, a minimum number
of users required for the transformation and the list of userIDs that participate
in the transformation. The most restrictive privacy policy defines the minimum
number of users. Usually, the list of userIDs is longer than the minimum number of
users to tolerate some dropouts. Note that, in some cases, the list might also be
empty, and the query cannot run on the available streams. In this case, the service
provider has to update the query. The query planner gives the transformation plan
to the transformation manager.
When a user updates or revokes a privacy policy, the query planner checks the

compatibility of the new privacy policy with the transformation plan and potentially
removes the stream from the transformation. However, as long as there are more
than the minimum number of users remaining, the transformation can continue and
simply treat the stream as dropped.

6.3.2 Transformation Manager

The transformation manager receives as input a set of transformation plans. Conse-
quently, the transformation manager’s job is to ensure that the existing transforma-
tion plans execute, which consists of two parts. First, the transformation manager
needs to distribute the transformation plan to all privacy controllers involved in the
transformation. Second, the transformation manager is responsible for starting a job
in the stream processing system that executes the privacy transformation. Depending
on the size and complexity of the transformation, this can also involve multiple jobs.
In PolicyCrypt, the component that executes the privacy transformation is called
the data transformer.

6.4 Privacy Controller

In PolicyCrypt, the privacy controller is the component which is responsible for
expressing and enforcing privacy policies. The first part of this section describes the
interface that the privacy controller offers to users to register data streams and to
express privacy policies. The following parts outline the setup phase to bootstrap
a new privacy transformation and the privacy transformation phase that helps to
facilitate transformations while enforcing the privacy policy.
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6.4.1 User Interface

The privacy controller provides an interface for users to interact with PolicyCrypt.
The API consists of two parts, a Registration API used for setting up new data
producers and a Privacy Policy API to define and change privacy policies for streams.

Registration API The Registration API allows a user to register new data streams
with the privacy controller. During this process, the privacy controller fetches data
stream schemas from the policy manager, generates a master secret, and creates a
configuration file for the data producer based on the data stream schema.

Privacy Policy API The Privacy Policy API allows a user to create, update, or
revoke privacy policies based on the available data stream schemas. After submitting
a new or updated version of a privacy policy to the policy manager, the privacy
controller needs to be ready in case the query planner includes the stream in a
privacy transformation. A new privacy transformation always starts with a setup
phase based on the transformation plan.

6.4.2 Setup Phase

The setup phase starts, once the privacy controller receives a transformation plan
from the policy manager. The privacy controller verifies the compliance of the
transformation plan against the user-defined privacy policy. In PolicyCrypt, this
involves verifying that for the included attributes, the window size, aggregation size,
and noise configuration do not violate the privacy policy. In the case of transformation
involving streams from multiple users, the privacy controller fetches certificates from
the PKI and verifies the involved identities. As a next step, the privacy controller
establishes a pairwise shared secret with the other privacy controllers using a Diffie-
Hellman key exchange protocol. The pairwise shared secrets build, combined with
the hash of the transformation plan, the master secrets for the MPC protocol in the
privacy transformation phase.

Support for larger Universes Establishing a large number of shared secrets using
the Diffie-Hellman key exchange is expensive. As a result, in many settings, this
prohibits transformation plans involving a large number of identities. The evaluation
in Section 8.1 shows the costs associated with different transformation plans. This
section outlines a basic idea on how to extend the capabilities of PolicyCrypt for
massive transformations.
One of the key ideas of the PolicyCrypt secure aggregation protocol is that no

one knows the complete structure of the secure aggregation graph because every
participant is only aware of their neighbors. In the current setting, every node can
potentially have an edge with every other node. As a result, every node needs to
establish a pairwise secret with every other node to determine whether the edge
exists. This property can be relaxed to support large universes efficiently. An option
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is to determine the possible neighbors only from a smaller set because this would
mean that each node would need to perform fewer Diffie-Hellman key exchanges.
However, doing this naively could result in a disconnected secure aggregation graph.
The idea for optimizing the setup phase starts by using an efficient crypto-

graphic hash function to partition all N participants into a fixed number of buckets
{b0, b1, . . . bp−1} based on the user id, such that in expectation each bucket contains
N/k participants. Afterward, a participant of the i-th bucket, forms a bucket group
Bi with participants from “neighboring” buckets.

Bi = b(i−k mod p) ∪ . . . ∪ bi ∪ . . . ∪ b(i+k mod p)

The Diffie-Hellman key exchange is now only performed with participants in the
same bucket group instead of all N . These bucket groups fulfill two properties:

• Participant u is in the bucket group of participant v if and only if participant
v is in the bucket group of participant u.

• The bucket groups are overlapping (controlled by the parameter k).

Informally, a consequence of these two properties is that when all participants
perform the secure aggregation protocol from Section 5.3 on their bucket group
Bi, the secure aggregation graph including all N participants forms a connected
component as long as the individual bucket groups form a connected component.
In this optimization, the bucket groups are public knowledge. However, due to the
overlapping bucket groups that form a ring, an attacker would require 2k buckets
full of colluding participants to disconnect the secure aggregation graph.

6.4.3 Privacy Transformation Phase

During the privacy transformation phase, the privacy controller’s task is to continu-
ously check that the desired transformation does not violate the privacy policy. This
check involves verifying that the aggregation includes enough participants or that
the (ε, δ)-budget for differential privacy is not depleted.

For privacy transformations over a single stream (e.g. in window transformations),
a privacy controller can calculate the transformation token for any window, because
the token does not have to be adapted to the situation that an unknown subset
of other streams is not available during the respective window. As a result, the
privacy controller can pre-calculate the transformation tokens and send them to the
server. Under the assumption that no data producer and no privacy controller drops
out, the same holds for transformations over multiple streams. However, this is an
unrealistic assumption in particular for data producers, which usually run on cheap,
low-power hardware.

Fault Tolerance To be robust in case of failures, the privacy controller needs
to interact with the server before building and submitting a transformation token.
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This interaction is required because the secure aggregation protocol, to construct
transformation tokens for multi-stream aggregations, relies on the participants’
information (i.e., the universe of the transformation). To provide this information in
PolicyCrypt, the privacy controller maintains a local representation of the universe.
Initially, the privacy controller bootstraps the local representation with the list
of userIDs from the transformation plan. At the end of every window, the data
transformer requests a heartbeat from all privacy controllers. Afterward, the data
transformer computes the intersection of available data producers and privacy
controllers and broadcasts a membership delta compared to the previous window to
all privacy controllers. After updating the local representation of the universe with
this delta information, the privacy controller builds the transformation token and
sends it to the server. Figure 6.1 illustrates the communication of a single window.

6.5 Data Transformer

The data transformer is a job running on the streaming platform that is responsible
for performing the privacy transformation on top of encrypted data. The job is
started by the transformation manager based on a transformation plan, which
contains a compatible matching between streaming query and available privacy
policies.
As part of this responsibility, the data transformer aggregates the arriving en-

crypted data from all data producers of the transformation. In parallel, the data
transformer collects the required transformation tokens and finally performs the
actual privacy transformation. During this process, the data transformer is also
responsible for detecting and handling both data producer and privacy controller
dropouts. Figure 6.1 shows the interaction for a single window. As mentioned in Sec-
tion 6.4, after detecting a dropout of a producer or controller, the data transformer
broadcasts a membership delta to the previous window to all privacy controllers.
The following two paragraphs describe how the transformer detects dropouts of

data producers and privacy controllers.

Data Producer Dropout A dropout of a data producer is detected by checking
the observed timestamps of an individual data stream. As mentioned in Section
6.1, the data transformer interprets the window border events as commits. When
a window boundary timestamp is missing after the grace period is over, a data
producer is considered to be dropped for this window.

Privacy Controller Dropout An unavailability of a privacy controller is detected
via a heartbeat mechanism. The privacy controller sends a commit to the data
transformer to indicate the preparedness for sending a transformation token at the
end of a window. The data transformer defines a timeout for collecting commits.
When the timeout is reached, all privacy controllers that failed to commit are
marked as dropped for this window. PolicyCrypt focuses on minimizing the time
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Figure 6.1: Interaction for a single window of a privacy transformation between data
producer, data transformer, and privacy controller.

between committing and sending a transformation token. However, in the rare
case that a privacy controller fails in between the two events, a transformation
cannot be completed until the privacy controller recovers and provides the missing
transformation token.
Note that sending a commit (heartbeat) followed by the transformation token

is functionally equivalent to the protocol of Ács et al. [12]. Instead of sending a
commit, they send a masked value. After the client receives updates from the server
about the dropped clients, the client adjusts its contribution and lifts the masked
value. As long as no privacy controller drops out in between sending the commit
and the token or in between the first masked value and the second, the protocol
is robust to clients dropping out. However, the protocol from PolicyCrypt has the
advantage that a commit is much smaller than a masked value.

6.5.1 Post-Processing

After performing the privacy transformation on encrypted data, results are available
in plaintext in a privacy policy compliant form. The resulting stream enables the
data transformer in PolicyCrypt to apply a simple set of post-processing requested
by the query. For example, this involves decoding the aggregation-based encoding
or implementing the hopping window. If this is not sufficient, a service provider
can always use the existing stream processing pipeline to implement more complex
post-processing on top of the privacy policy compliant result streams.
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7 Implementation

This section provides an overview of the implementation of PolicyCrypt that is
used in the evaluation. The PolicyCrypt platform is implemented on top of Apache
Kafka [46]. Figure 7.1 shows a sketch of PolicyCrypt’s implementation and how the
different components communicate and interact.

The implementation consists of a Java library for the privacy controllers and the
data producers and a Kafka Streams application to execute the privacy transforma-
tion. The following sections describe each component in detail.

Apache Kafka

u1-ciphertexts

Data Transformer

Kafka Streams

Transformation Worker

Kafka Streams

Master

u1-tokens

u1-infos

results

partition-updates

Topics Transformation 1

Topics Transformation 2

…

Data

Producer

Privacy 

Controller

Trusted Client Untrusted Server

Figure 7.1: Implementation Overview

7.1 Data Producer

The data producer is a lightweight Java library that handles stream preprocessing,
serialization, and encryption. It leverages the Kafka Producer API to send the
encrypted digests to the Kafka cluster. In the current implementation of the data
producer, all attributes of an event are 64-bit integers, and Avro [44] is used for data
serialization.

The PRF of the encryption scheme is instantiated with an AES block cipher using
256-bit keys. The data producer relies on the AES implementation of the default

63



7 Implementation

Java security provider. The encryption scheme adjusts the 128-bit PRF output to
the 64-bit attribute size using a technique called length matching hash function [25].
The data producer assigns two timestamps to every event; first, the actual

timestamp of the event, and second the timestamp of the previous event used
in the encryption scheme. The prototype uses Unix timestamps, describing the
number of milliseconds elapsed since the Unix epoch, as these timestamps. In
PolicyCrypt, the event timestamps must be unique per data producer because
otherwise, the same nonce is used more than once in the encryption. As a result,
the theoretical throughput that a single producer can achieve has a limit of 1000
records per second. However, in cases where this is not sufficient, an implementation
could always use timestamps in micro- or nanoseconds. The library provides two
simple methods, listed in Table 7.1, for developers to integrate PolicyCrypt with
existing data stream producers.

API Description
submitRecord Encrypts, serializes, and sends the record to PolicyCrypt.
submitHeartbeat Triggers an update in case no other records are available.

Table 7.1: API to interact with the PolicyCrypt data producer.

7.2 Privacy Controller

The privacy controller is implemented as a standalone Java app and uses the Kafka
Consumer and Producer API for communication with the server.
A privacy controller can be responsible for handling the privacy transformations

of multiple data producers in different universes. For each universe, the privacy
controller subscribes to the info topic of the respective universe to get updates on
the progress of the transformations. Using updates from this connection, the privacy
controller knows when to send commits, how the members of the universe changed
over time, and when to send the transformation tokens. The privacy controller
writes both the commit messages and the transformation tokens to the token topic
belonging to the universe.

The setup phase of a new privacy transformation involves an ECDH key exchange
protocol to establish pairwise secrets. In the prototype of PolicyCrypt, the privacy
controller relies on the Bouncycastle [74] implementation of the ECDH key exchange
using the secp256r1 curve to derive the 256-bit shared keys.

Remember, that a goal of the system is to minimize the time in between sending
a commit and sending the transformation token due to robustness concerns. To
achieve this and to reduce the latency, the privacy controller has an optimized
implementation of the secure aggregation from Section 5.3.

The MPC protocol among the privacy controller is the most expensive part during
this time, in particular for large universes. Therefore, the secure aggregation protocol
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described in Section 5.3 is implemented in Rust and is invoked from the privacy
controller app via the Java Native Interface (JNI). Recall, the secure aggregation
protocol requires many evaluations of a secure PRF. In PolicyCrypt, the PRF is
instantiated with an AES block cipher using 256-bit keys. As a further optimiza-
tion, the secure aggregation protocol uses, if available, the AES-NI instruction set
extension.

7.3 Data Transformer

The prototype data transformer consists of two components, which are both built
on top of Kafka Streams. The first component is the transformation worker, which
is responsible for aggregating both the ciphertexts and the transformation tokens.
Every privacy transformation has a separate set of transformation workers that
perform the transformation. The number of workers per transformation depends on
the complexity and size of the privacy transformation.
The second component is the master, which is shared across all transformations.

The master component is responsible for the synchronization between different
workers. The workload on the master for every transformation is small. However, for
cases where the master becomes a bottleneck, it is also possible to introduce a new
master and share the workload. Both Kafka Streams applications use in-memory
data stores.
Every window of the privacy transformation has a status. Different windows

within the same privacy transformation can have a different status. For example,
while the data transformer aggregates ciphertexts in window i, window i− 1 might
be waiting for transformation tokens, and window i− 2 might already be complete.
Table 7.2 gives an overview of the possible window status in PolicyCrypt and their
respective meaning.

Status Description
Open The observed stream time passed the start of the window.
Staged The observed stream time passed the window end but the grace

period might still be open. This status is the signal to collect
commits from the privacy controller.

Committed The data transformer does not accept further commits.
Merged The universe members are fixed

(i.e., the delta to the previous window is available).
Closed The data transformer collected all transformation tokens and

performed the privacy transformation.

Table 7.2: The different status of a window transformation.

In PolicyCrypt, the mechanism to scale a privacy transformation for large universes
with high-velocity data is based on the concept of Kafka Streams tasks. PolicyCrypt
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supports multiple workers for the same universe, and a single one of these workers
consists of several tasks. As a result, every privacy transformation has a set of tasks
available for processing, which are possibly running on different worker nodes.
The idea is that tasks are working on different partitions of the same privacy

transformation at the same time. A single task only observes and processes a fraction
of the ciphertexts, commits, and transformation tokens. Based on this observed
subset of data, a task assigns a status to each window. Due to this partitioning,
the same window might not necessarily have the same status in all tasks. However,
when a task updates the status of a window, the task informs the master node. The
master node collects the status updates from the individual tasks and defines the
global window status. Whenever the global status of a window changes, the master
writes an update to the info topic of the privacy transformation.

To reduce complexity, the privacy controllers are unaware of the concept of tasks
and their status. They only observe and react based on the global window status.

7.4 Policy Manager

In the prototype implementation of PolicyCrypt, a configurable Ansible [55] playbook
imitates the role of the policy manager. Given the parameters from the streaming
query, the playbook coordinates setting up the environment and running privacy
transformations on a remote cloud infrastructure.
As part of the policy manager, PolicyCrypt provides a dashboard based on

Smashing [5], which visualizes the current state of the transformation. Apart from
meta-information about the transformation, the dashboard displays the universe
membership over time. Further, the dashboard shows the universe’s minimum size,
required to satisfy all involved privacy policies. Finally, it displays the status of each
window and the public result of the transformation.

Figure 7.2: PolicyCrypt Dashboard to visualize the state of a privacy transformation.
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This chapter presents the evaluation of the PolicyCrypt platform. The objective
of the experimental evaluation is to answer the following three questions: (i) How
expensive is PolicyCrypt in terms of computation, bandwidth, and storage for the
different components? (ii) How does PolicyCrypt scale? And (iii) Can the platform
support practical applications?

8.1 Experimental Setup

The experimental evaluation consists of two parts. First, a set of microbenchmarks
quantifies the cost of the different components. For the privacy controller, this
includes an assessment of the performance benefits of using the new secure aggregation
optimization compared to the Strawman and Dream (Section 5.3). Second, the
evaluation quantifies the performance overhead of PolicyCrypt compared to a system
with no encryption in an end-to-end benchmark to demonstrate the practicality of
the privacy platform. For this end-to-end benchmark, each data producer has a
separate privacy controller (i.e., a privacy controller does not represent multiple data
producers), which represents the worst-case because this means that the number
of privacy controller involved in the MPC protocol is equal to the number of data
streams.

8.1.1 Methodology

The evaluation measures and quantifies the overhead of PolicyCrypt concerning the
following metrics:

• Computation time: The average time required to perform a computation on a
single thread of a CPU.

• Throughput: The number of records processed by a system component per
unit of time.

• Latency: The time it takes a system to complete a request or query. For
time-windowed streaming queries, which include a grace period to handle
late-arriving records, the latency represents the time between the end of the
grace period until the result of the query is ready.

• Bandwidth: The amount of data transmitted over the network.
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• Storage: The amount of data kept on a machine.

The results from each experiment consist of an average over multiple iterations
accompanied by the standard deviation.

8.1.2 Setup

The data producer, privacy controller, and data transformer of PolicyCrypt are Java
applications that run on the JVM with Java 11.

Microbenchmark All microbenchmarks run on a single Amazon EC2 machine
(m5.xlarge, 4 vCPU, 16 GiB, Ubuntu Server 18.04 LTS). The data producer mi-
crobenchmarks also run on a Raspberry Pi 3 (Model B, 1 GiB, Raspbian Buster 10)
to analyze the performance on resource-constrained edge devices.

End-to-End benchmark All components of the end-to-end benchmark run on
the AWS cloud. The central component of the end-to-end benchmark is Amazon
MSK [15], which provides a Kafka cluster as a fully managed service. The Kafka
cluster contains two broker nodes spread over two availability zones. The encryption
in transit provided by Kafka is turned off because data is already encrypted by
PolicyCrypt.
For data producer and privacy controller, the end-to-end benchmark uses a

set of Amazon EC2 machines (m5.xlarge, 4 vCPU, 16 GiB, Ubuntu Server 18.04
LTS) and the data transformer runs on two Amazon EC2 machines (m5.2xlarge,
8 vCPU, 32 GiB, Ubuntu Server 18.04 LTS). The end-to-end benchmark groups
the data producers and privacy controllers into partitions of up to 200 producers
and controllers, respectively. A single producer- or controller-partition runs on one
of the EC2 machines. The data transformer application spreads over the two EC2
machines using Kafka Streams.

Configuration Unless explicitly stated, PolicyCrypt uses an event with a sin-
gle stream attribute x in the standard aggregation-based encoding ~x = [x, x2, 1].
Throughout the evaluation, secure aggregation via the PolicyCrypt optimization
assumes up to half the participants are colluding (i.e., α = 0.5), and the failure
probability is below δ = 1× 10−7.

8.1.3 Application

The end-to-end benchmark provides two options to simulate different application
use cases. The first option is to provide a separate file for each data producer that
contains the application-specific data stream.
The second option to benchmark PolicyCrypt is a data stream generator that

simulates a random data stream using a Poisson process. Data streams for different
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applications have distinct characteristics. For example, they differ in the interarrival
time, which describes the time between two events.

A Poisson process is a stochastic process, where the sequence of interarrival times
is a sequence of i.i.d random variables sampled from an exponential distribution
with density fX(x) = λexp(−λx) for x ≥ 0 [48]. The parameter λ controls the
arrival rate of the data stream. Moreover, the mean of an exponentially distributed
random variable is 1/λ, which is the average time (e.g. number of seconds) between
two events. For any time interval t, λt is the expected number of events within
that interval. In the end-to-end benchmark, the data stream of an individual data
producer is controlled by the mean 1/λ.

8.2 Cost - Data Producer

First, the evaluation quantifies the costs of running a data producer with PolicyCrypt.
Recall that the data producer is unaware of the privacy layer and, hence, only has
to encode and encrypt the data stream before forwarding it to the service. To
demonstrate that the data producer is lightweight enough to run on resource-
constrained edge devices, the section also reports the performance on a Raspberry
Pi.

Computation Figure 8.1 shows the computation time of the data producer for
different encodings. Remember that to support a broader range of statistical queries,
PolicyCrypt encodes values as a vector (Section 5.2), which introduces additional
overhead in encoding and encryption. For example, to calculate the variance, the
encoding vector ~x = [x, x2, 1] consists of three elements that have to be separately
encrypted. The size of the encoding for the max, min, and histogram query depends
on the number of buckets, which is by default set to 10.

The cost of the different queries for encoding and encryption ranges from 0.19µs
to 1.91µs on EC2, which corresponds to throughput in the range of 524k to 5.3m
records per second. On the Raspberry Pi, the cost of encoding/encrypting the same
queries is between 13.1µs and 129.7µs, which corresponds to a throughput in between
7.7k and 76.6k records per second.

Table 8.1 shows that the performance of the more complex bucket queries depends
on the number of buckets. When varying between 10 and 1000 buckets, the cost for
encoding/encryption takes between 1.9µs and 189.6µs on EC2. On the Raspberry Pi,
this takes between 95µs and 11.8ms. Overall queries, the encryption amounts to 95%
of the computation time on EC2 and more than 98% on the Raspberry Pi. This result
means that in case the data producer’s performance is not sufficient for encodings
with a large number of buckets, a data producer can resort to hardware-accelerated
AES to improve the throughput.

The data producer incurs a further small overhead to accommodate for the
separation of the data plane and privacy plane. On every window border, the data
producer must additionally submit a ciphertext, even if no data is present. This

69



8 Evaluation

count sum avg stddev var reg hist max min
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

C
om

pu
ta

tio
n 

[u
s]

Encode
Encrypt

(a) EC2 instance

count sum avg var stddev reg hist max min
0

20

40

60

80

100

120

140

C
om

pu
ta

tio
n 

[u
s]

Encode
Encrypt

(b) Raspberry Pi

Figure 8.1: The computation time of stream encoding and encryption in PolicyCrypt.
The encodings for max, min, and hist use ten buckets.

Time [µs] Throughput [rec/s]
Buckets 10 100 1000 10 100 1000
EC2 1.9 17.2 189.6 537k 58k 5.3k
Raspberry Pi 95 1.1k 11.8k 10.5k 916 84

Table 8.1: Comparison of the computation time and throughput of encoding and
encryption for encodings with a varying number of buckets.

procedure increases the computational cost at a fixed rate e.g. for 10s windows; the
data producer has to encode and encrypt one additional ciphertext, which consumes
0.1 of the throughput.
Overall, these results demonstrate that the cost in terms of computation is

acceptable, and even constrained devices can support high throughput workloads as
long as the number of buckets in the encodings remains in a manageable region.

Bandwidth Compared to plaintext, the aggregation-based encodings and the
additional timestamp, required for decryption, introduce a ciphertext expansion
which manifests in the required bandwidth of a data producer. Table 8.2 summarizes
this ciphertext expansion for different encodings assuming both 64-bit values and
timestamps. The expansion is in the range of 1.5x to 3.5x for encodings, not relying
on buckets, which is reasonable.
For the other encodings (histogram, min, max), the expansion depends on the

number of buckets. Using ten buckets leads to en expansion factor of 6x, which is
still acceptable. However, for high-velocity data streams with many buckets, the
bandwidth can become the bottleneck.

Storage Apart from the configuration that contains the information regarding
where to forward the data stream and what the base window size is, a data producer
has to store only the master secret (i.e., 16 bytes) for the stream encryption. Thus,
overall the storage overhead on the data producer is negligible.
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sum count avg var hist max min reg
|~x| 1 1 2 3 10 10 10 5
record size 24b 24b 32b 40b 96b 96b 96b 56b

(1.5x) (1.5x) (2x) (2.5x) (6x) (6x) (6x) (3.5x)

Table 8.2: The PolicyCrypt record size expansion in comparison to plaintext. For
the hist, min, and max function, the table shows the encoding size when
using ten buckets.

8.3 Cost - Privacy Controller Single-Stream

PolicyCrypt introduces the privacy controller as a new component that has to be
operated by the user or a trusted service. The cost of the privacy controller depends
on the executed transformations on the service side. This section evaluates the costs
of the efficient single-stream window transformations that do not require an MPC
protocol. When a transformation involves only a single data producer (e.g. window
transformation), the privacy controller can create the necessary tokens efficiently
offline. The reason for this is that there are no adaptions necessary to react to
different subsets of producers dropping out (Section 6.4).

Computation Due to the key canceling of the encryption scheme, the necessary
time to create a token is independent of the number of in-range aggregated ciphertexts
and, hence, also independent of the window size of the transformation (Section
5.1). On average, it takes a privacy controller 0.55µs to create a transformation
token. As a consequence, the privacy controller can derive, on average, 1.8 million
transformation tokens per second for arbitrary window sizes. This result shows that
for a small window size of 20 seconds, a privacy controller can generate the necessary
transformation tokens for more than a year within one second.

Bandwidth Each transformation token is an element of the additive homomor-
phic group of the stream encryption (Section 5.2). As a result, Table 8.2, which
contains ciphertext sizes for different encodings, also shows the size of a respective
transformation token. A privacy controller must submit one transformation token
for every window of a privacy transformation. Considering the example from above
with a window size of 20 seconds and under the standard encoding ~x = [x, x2, 1],
the tokens to facilitate the privacy transformation for a year require approximately
63 MB of bandwidth, which should pose no problem.

Storage Apart from the negligible storage requirements for the privacy policy and
the transformation plan, the privacy controller only needs to store the master key
(i.e., 8 bytes) that the associated data producer uses for encryption. Thus, the
storage footprint of the privacy controller for single-stream transformations is small.
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8.4 Cost - Privacy Controller Multi-Stream

After showing the small overhead of a privacy controller in the single-stream case,
this section analyses the performance of the privacy controller in the multi-stream
case. Recall that for transformations over multiple streams, the privacy controller
has to be online and participate in the optimized secure aggregation protocol with
the other privacy controllers (Section 5.3).

The evaluation measures the cost of running the PolicyCrypt secure aggregation
protocol for a different number of privacy controllers and over multiple windows and
compares it against the Strawman and Dream [12] protocols (Section 5.3).

As a first step, all these protocols require a setup phase to establish pairwise shared
secrets with all involved parties. Afterward, the privacy transformation phase starts,
in which the privacy controllers collaborate to create the required transformation
tokens at the end of each window.

8.4.1 Setup Phase

The setup phase of a privacy transformation consists of two steps. First, fetching all
public-keys from a central PKI, and second performing the ECDH key exchanges to
establish the shared secrets. Table 8.3 shows the computation and bandwidth costs
for running the setup phase.

Considering all privacy controllers, the setup phase overhead increases quadratically
in the number of privacy controllers (i.e., total O(N2)) However, from the perspective
of a single privacy controller, the overhead increases only linearly.

Privacy Controllers 2 10 100 1k 10k 100k
Bandwidth 91 B 819 B 9.0 KB 91 KB 910 KB 9.1 MB
Bandwidth Total 182 B 8.2 KB 901 KB 91 MB 9.1 GB 910 GB
Shared Keys 32 B 288 B 3.2 KB 32 KB 320 KB 3.2 MB
ECDH 0.25 ms 2.2 ms 25 ms 249 ms 2.5 sec 25 sec
ECDH Total 0.5 ms 22 ms 2.5 sec 4 min 7 h 693 h

Table 8.3: The cost of the setup phase for different number of privacy controllers.
The total bandwidth and ECDH results sum up the cost involved for all
involved privacy controllers of the universe. The other results show the
costs of participation for a single privacy controller.

Bandwidth PolicyCrypt uses the elliptic-curve Diffie–Hellman (ECDH) key ex-
change protocol on the secp256r1 curve to derive 256-bit shared keys (Section 7.2).
In a production system, the PKI would hand out signed certificates containing the
public-key. However, the size of a public-key certificate varies depending on the data
fields.
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For simplicity, the bandwidth estimates in this analysis only consider the 91
bytes required for a public-key from the Java Bouncycastle security implementation
[74]. Nevertheless, these bandwidth estimates provide a rough estimate for the
requirements of a privacy controller in a production system.

The bandwidth requirements range from less than 1KB for ten privacy controllers
up to 9.1MB for 100k privacy controllers. Considering that the setup phase has to
be performed only once in the lifetime of a privacy transformation, it is reasonable
even for 100k participants.

Computation Given the public-key of another identity, establishing a single shared
secret using the ECDH key exchange protocol takes on average 0.25ms. This
measurement allows extrapolating the expected time it takes to set up larger universes.
For example, a privacy controller needs approximately 2.5s to establish all shared
secrets in a universe with 10k privacy controllers and 25s with 100k privacy controllers.
The overhead is modest, taking into account the infrequent execution of the setup
phase. However, if necessary, the computation time can be further reduced by
leveraging more than a single core because the different key exchanges are independent
and thus highly parallelize.

Storage In addition to their private-key (i.e., 150 bytes), privacy controllers only
need to store the established shared secrets of the current privacy transformation
because after verifying the certificates and performing the ECDH key exchange, the
privacy controller can discard the certificate including the public-key. Each shared
key requires 32 bytes, which results in 320 KB and 3.2MB storage, respectively,
for 10k and 100k shared keys. However, given the tradeoff between bandwidth,
computation, and storage, it can make sense to preserve the certificates and shared
secrets from previous setup phases on disk. This caching allows reusing work, in
the case that at a later stage, the two privacy controllers end up again in the same
universe. Overall, the storage requirements of the setup phase are reasonable.

8.4.2 Privacy Transformation Phase

After quantifying the cost of the setup phase of a new privacy transformation, this
part focuses on the complexity of the recurring creation of transformation tokens
during the privacy transformation phase. The target is to evaluate and analyze the
multi-round computational advantage of the optimized secure aggregation protocol
in comparison to the alternatives Strawman (96x) and Dream (55x).

For being robust in the face of dropouts, all secure aggregation protocols require
interaction between privacy controller and service (Section 6.4). When the service
initiates a two-stage interaction (i.e., at the end of a window), the available privacy
controllers commit to sending a transformation token. Subsequently, the service
determines the current universe based on the collected commits and the state of the
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data streams and informs the privacy controller about the changes in respect to the
previous window.
To obtain a detailed understanding of the performance improvements of the

secure aggregation protocol optimization, the following paragraphs compare the
computation for a single round, provide an analytical comparison, consider the
performance over time, and analyze the performance in the face of dropouts.

Computation: Round While in the Strawman and Dream, all rounds are identical
(i.e., every round performs the same computation), the PolicyCrypt optimization
distinguishes between two types of windows. Recall that the optimization groups
multiple rounds into epochs. The first round of every epoch is different from the other
rounds because the protocol performs additional work to improve the performance
of the remaining rounds. The high-level idea of the optimization is that after a few
rounds, the additional work performed at the beginning of an epoch is amortized,
and hence the overall cost of the computation reduces significantly in the long run.

Three factors determine the effectiveness of such an optimization: (i) What is the
cost of the first round of an epoch? (ii) What is the cost of a later round in the
epoch? Furthermore, (iii) How frequently does the epoch change?
The evaluation starts with the third question. Figure 8.2a shows the number of

rounds per epoch (i.e., epoch size) for different parameter pairs (α, δ) as a function
of the number of participants. The parameter α controls the percentage of non-
colluding clients, while the parameter δ is an upper bound on the failure probability
of the protocol (Section 5.3).

In the standard configuration (i.e., α = 0.5, δ = 1× 10−7), one epoch has between
256 and 2304 rounds when varying the number of privacy controllers in between 100
and 10k. The epoch size increases in the number of participants in the form of a
step function. The reason for this lies in the construction of the secure aggregation
graphs because the Erdős–Rényi graph construction requires that the segment size
must be a power of two. At the step, there are enough participants to choose the
next higher power of two for the segment size while still satisfying the error bound
(details in Section 5.3).
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Figure 8.2: PolicyCrypt secure aggregation epoch size and expected degree for dif-
ferent number of participants.
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The next part of the evaluation addresses questions (i) and (ii) by quantifying the
average time of a single round of the secure aggregation protocol. The comparison
of the average round times provides insight into the effectiveness of the optimization.
The evaluation varies the number of privacy controller from 100 to 10k; Table 8.4
shows the results. For PolicyCrypt, the table distinguishes between the average time
of the first round and later rounds in the epoch.
The average time for the non-setup rounds is consistently the lowest. All round-

times increase with more participants (i.e., the universe size), except for these later
rounds in an epoch that remain below 20µs. This is because the universe size has
little influence on the operations required in an optimized round. This phenomenon
is described in more detail at a later stage of this evaluation.
The round time of Dream is consistently lower than the round time of the

Strawman. The difference is in-between 4µs for 100 participants and 978µs for
10k participants. This discrepancy is because, for the standard aggregation-based
encoding, the Strawman requires both more PRF and ADD operations.
The cost to set up an epoch in PolicyCrypt is high in comparison to a round in

Strawman and Dream. For example, for 500 participants, it takes 782µs to setup
an epoch for PolicyCrypt compared to a regular round that takes 113µs and 73µs
for the Strawman and Dream. However, privacy transformations are designed to
run for multiple windows, and hence the cost for the first round of an epoch is not
the crucial factor. Instead, for the considered workloads, it is important that over a
long series of windows, the computation time remains low.

Round Participants
100 200 500 1k 10k

PolicyCrypt [1st] 477 482 782 1222 7740 µs
PolicyCrypt [2+] 14 14 15 15 20 µs
Strawman 25 47 113 222 2234 µs
Dream 21 33 73 134 1256 µs

Table 8.4: Computation cost of a single round. For PolicyCrypt, the table distin-
guishes between the first round of an epoch [1st] and all the remaining
rounds of the epoch [2+].

Figure 8.3 shows the cost associated with running the three approaches with
500 participants over a series of 800 windows. The cumulative computation time
of PolicyCrypt forms a piecewise linear function with steps at the beginning of
each epoch due to the two different types of rounds. In the beginning, both the
Strawman and Dream perform better than PolicyCrypt (Fig. 8.3b). This result is
because of the higher costs incurred in the first round to set up the epoch. However,
after repeating the protocol for 15 rounds, the cumulative latency shows that the
PolicyCrypt optimization outperforms both the Strawman and Dream.
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Figure 8.3: Comparison of secure aggregation approaches over multiple windows for
500 participants.

Computation: Analytical The experiments underline what the analytical analysis
of the three approaches in Table 8.5 suggests. The three considered secure aggregation
protocols mainly consist of a sequence of PRF evaluations and additions, and the
degree of a node in the secure aggregation graph determines the length of a sequence
(Section 5.3). Hence, for an encoding vector with |v| elements, over a period of
W rounds, with N participants and expected node degree ` << N (Dream and
PolicyCrypt), the optimized approach of PolicyCrypt must evaluate the PRF only
N − 1 +W · ` · |v| times compared to W · (N − 1) · |v| and W · (N − 1) +W · ` · |v|
in the Strawman and Dream respectively. Note that the large N is only an additive
factor in PolicyCrypt while it is a multiplicative factor in both the Strawman and
Dream. The only multiplicative factor in PolicyCrypt is the expected node degree `.

Approach PRF ops ADD ops
Strawman W · (N − 1) · |v| W · (N − 1) · |v|
Dream W · (N − 1) +W · ` · |v| W · ` · |v|
PolicyCrypt N − 1 +W · ` · |v| W · ` · |v|

Table 8.5: Comparison of the expected number of PRF and ADD operations in the
three secure aggregation protocols over W rounds, for N participants, `
expected node degree, and an encoding vector with |v| elements.

As a next step, the goal is to show that the expected node degree ` is, in fact,
much smaller than the number of participants (i.e., ` << N). Figure 8.2b provides
an overview of the expected node degree ` in a single secure aggregation graph for
different parameter pairs (α, δ) as a function of the number of participants. From a
performance perspective, a lower node degree results in better performance because
less hiding nonces need to be derived and added. However, a lower node degree
increases the probability that the secure aggregation graph is disconnected. Hence,
the error bound δ determines a lower bound for the expected node degree. In the
standard configuration, the expected degree ranges from 50 up to 133, which is
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considerably lower than any N . Note that the zigzag artifacts in the figure stem
from the graph construction process, similar to the steps in Figure 8.2a.

Computation: over Time The above analysis has demonstrated that when vary-
ing the number of participants in-between 100 and 10k, the three key metrics of the
PolicyCrypt optimization behave as follows: (i) The cost to create a transformation
token in the first round is in the range of 477µs and 7740µs which includes the time
to set up the later rounds, (ii) The cost to create a transformation token during an
epoch is between 14µs and 20µs, and finally (iii) The epoch size is in between 256
and 2304 rounds.

Now the goal is to quantify the overall performance gain of the secure aggregation
optimization compared to the Strawman and Dream. Figure 8.4 compares the average
computation cost of the three approaches over an increasing number of windows
(i.e., rounds), for aggregation over 1k and 10k participants. Already for 8 and 16
windows for 10k and 1k participants, respectively, the PolicyCrypt optimization is
more efficient on average. This result means that a privacy transformation does not
have to run for a complete epoch to benefit from the optimization; a few windows
are sufficient. While the average time remains constant in the Strawman and Dream
(because all their rounds are identical), the average time per round decreases in
PolicyCrypt as the cost of the setup round becomes less significant.
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Figure 8.4: Comparison between secure aggregation methods for different number of
windows.

Figure 8.5 compares the average computation cost of the three approaches for a
different number of participants over an entire epoch. Note that using the epoch
size in Figure 8.5 as the number of rounds is the best case for the PolicyCrypt
optimization because all the initial setup work was “reclaimed”. Figure 8.2a lists
the associated epoch sizes for the different numbers of participants; however, this
is not the essential point. The essential point is that both the Strawman and
Dream accumulate considerable cost over time in particular if many participants are
involved, while PolicyCrypt remains efficient.
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For 10k participants, PolicyCrypt can maintain a throughput of 43k transformation
tokens per second compared to 449 and 792 tokens per second in the Strawman
and Dream. Recall the example from Section 8.3, where the evaluation showed
that for a window size of 20s, a privacy controller for a single stream could create
all the transformation tokens required for a year within one second. To create the
same tokens for a multi-stream transformation involving 10k participants under the
assumption of no dropouts, it takes 58 min and 33 min with the Strawman and
Dream and only 36s with the PolicyCrypt optimization.
To conclude, the extensive analysis of the three approaches’ computation time

demonstrated that the privacy controller could create transformation tokens effi-
ciently, even for transformations involving 10k participants.
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Figure 8.5: Average computation time over an entire epoch.

Computation: with Dropouts The transformation plan contains the initial list of
participants. These members form a universe for a privacy transformation (Section
6.4). However, over time the universe can change due to members dropping out or
previously dropped members returning. There are two possibilities regarding how to
handle these dropouts: (i) The first round builds the graph for all participants from
the transformation plan, including the dropped. This option has the advantage that
in case a participant returns during an epoch, it is already known whether they share
a mask. However, if a participant is permanently dropped, building these edges is
an unnecessary overhead. Note that this possibility is equivalent to handling the
event that participants drop during an epoch, and hence later rounds must ignore
their edges in the graphs. (ii) The second possibility is to consider only the current
participants in the first round of an epoch when building the graphs. In case a
participant returns during an epoch, the existing graphs can then be extended.
Figure 8.6 shows the cost of different numbers of participants dropping and

returning using possibility (ii). For a dropped participant, the protocol needs to
check if there is an edge in the respective round. If this is the case, the shared mask
is not derived and added to the transformation token, which is the cause of the
small difference (20.3µs to 27.5µs) to adapt for a dropped node with an edge (E)
and without an edge (NE). For a window with 50 of the 1000 participants dropping
out, the protocol requires 27.5µs compared to the required 15µs for no dropouts
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from Table 8.4. In comparison to the 222µs and 134µs round times of the Strawman
and Dream, this is acceptable.
Furthermore, Figure 8.6 shows that the graph expansion required for returning

participants comes at a cost that is linear in the number of returned members. Note
that this is a computational cost that the privacy controller saved during the first
round of the epoch. For example, when 300 of 1000 participants return in a round,
it takes 340µs to extend the graphs. The cost of handling returned and dropped
nodes (i.e., combined) is additive.
Overall, also the cost of handling a changing universe is modest on the privacy

controller.
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Figure 8.6: Time needed to adapt PolicyCrypt optimization to a changing universe
of initial size 1000. Delta stands for the number of participants that
dropped or returned in the round respectively. In the combined case,
delta members dropped and delta other members returned. The table
compares the impact of a delta depending on whether a neighbor (E), or
a node without an edge (NE) is affected.

Bandwidth The required bandwidth for multi-stream transformation tokens is
identical to the bandwidth costs for single-stream transformation tokens because
the tokens are also an element of the additive homomorphic group of the stream
encryption (Section 5.2). Table 8.2 shows the size of a transformation token for
different encodings. A token in the standard encoding ~x = [x, x2, 1] requires 40
bytes.
In addition to the bandwidth required for submitting a transformation token, a

privacy controller involved in multi-stream transformation must also account for the
bandwidth during the interaction.
Many MPC protocols suffer from severe bandwidth overheads [43]. However,

this is not the case for the secure aggregation protocol of PolicyCrypt. The only
variable-sized component of the bandwidth is the size of the delta set ∆ (i.e., number
of dropped and returning participants per window), which the evaluation models as
a fixed percentage p∆ of the total number of participants in the analysis. Figure
8.7a shows the bandwidth requirements for three different percentages p∆ (0, 0.05,
0.1) as a function of the number of involved data streams.
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The secure aggregation protocol for up to 1k participants requires less than 1KB
bandwidth, even under the assumption of a 10% fluctuation p∆, which is extreme for
the considered scenario. The reason for 10% being extreme is that PolicyCrypt only
treats a data stream as dropped if either the data producer or the privacy controller
is unavailable at the end of a window. Temporary offline phases during a window do
not cause a dropout in the protocol.

The bandwidth also remains reasonable when scaling the protocol to even larger
aggregation groups. For example, for 10k participants of which 10% drop or return,
the required bandwidth is only 8.1KB.
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Figure 8.7

Storage For the privacy transformation phase, the privacy controller needs to store
the shared keys (i.e., 32 bytes per key) and all the secure aggregation graphs of the
epoch. Figure 8.7b shows the storage overhead introduced by the secure aggregation
optimization in comparison to the Strawman and Dream that only need to store
the shared keys. For 10k privacy controllers, an individual participant requires less
than 2 MB to store the shared keys and the over 2k secure aggregation graphs. As a
result, even though the overhead increases in the number of privacy controllers, the
total storage remains acceptable.
Note that if storage becomes a problem despite the moderate expansion (e.g.

because a single privacy controller is responsible for many data streams), a privacy
controller can always resort to storing only a fraction of the secure aggregation
graphs and recalculate the next batch of graphs at the required time. This procedure
remains reasonable because the additional computational costs for creating the
graphs are amortized after a few windows.

8.5 Cost - Data Transformer

Finally, the evaluation investigates the overhead of running a privacy-preserving
data transformer. The data transformer runs streaming jobs on a cluster of nodes,
which usually offers plenty of resources. In PolicyCrypt, the data transformer relies
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on the Apache Kafka architecture, which is designed to run at scale. Deployed Kafka
clusters are capable of ingesting 800 billion messages per day, which amounts to over
175 terabytes of data while at the same time being able to supply 650 terabytes to
consumers [78]. Nevertheless, the following paragraphs look at the overhead that
PolicyCrypt introduces.

Computation The data transformer needs to maintain a structure to track dropped
data producers and collect commits from privacy controllers. Additionally, cipher-
texts within a privacy transformation must be aggregated separately per data
producer to be able to react to dropouts in a later stage of the window. At the end
of a window, the data transformer needs to sum the ciphertext aggregates together
with the transformation tokens for decryption of the privacy policies’ conform result.
However, since all these overheads increase only in the number of privacy controllers
or data streams rather than in the number of ciphertexts, the computation overhead
is acceptable.

Bandwidth During the setup phase of a new privacy transformation, all involved
privacy controllers need to download the certificates of all participating identities.
Thus, the bandwidth overhead for a server increases quadratically in the number of
privacy controllers. Section 8.4 of the evaluation already considered the bandwidth
requirements for the setup phase from the viewpoint of a single privacy controller.
Now the goal is to examine the overall requirements. Table 8.3 shows the total
bandwidth for different numbers of privacy controllers. For 10k privacy controllers,
the transformation manager or a PKI needs to distribute 9.1 GB of public-keys, and
for 100k, this increases to 910 GB; for comparison, 910 GB would be about the same
bandwidth Netflix requires for distributing one hour of an HD video stream to 300
users [72]. However, if this exceeds the available resources, Section 6.4 outlines an
idea of how to reduce this overhead.

During the privacy transformation phase, the data transformer receives a commit
and a transformation token from every involved privacy controller, and the data
transformer needs to distribute the delta update of the universe (i.e., who dropped
out and who returned compared to the previous window). Figure 8.7a shows the
bandwidth requirements for a single privacy controller. By extrapolating these
numbers for 10k privacy controllers and assuming a fluctuation of 10%, a data
transformer requires 81 MB of bandwidth to perform the transformation on a single
window. This bandwidth is negligible in comparison to the bandwidth that the
transport of data requires.

As discussed in Section 8.2, the aggregation-based encodings introduce a ciphertext
expansion of a factor 2.5x for the standard configuration. This expansion manifests
in the bandwidth requirements of a data transformer. However, the overall band-
width overhead of PolicyCrypt should remain manageable for a data transformer,
particularly by leveraging Kafka’s architecture, which allows partitioning the load
over a cluster of machines.
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Storage The data transformer has two overheads. First, it must aggregate the
ciphertexts within a window per data producer. Second, the data transformer
requires an additional structure to track active data producers and privacy controllers.
However, in total, the overhead is small.

8.6 End-to-End Benchmark

100 200 400 600 800 1000
Data Producers / Privacy Controllers

0

1

2

3

4

5

6

L
at

en
cy

 [s
ec

]

Plaintext
PolicyCrypt

Figure 8.8: Boxplot of the latencies of the two systems Plaintext (no encryption) and
PolicyCrypt for different number of participants. The latency measures
the time after the grace period of a window is over until the result of
the transformation is available.

The goal of this section is to demonstrate, based on an end-to-end benchmark, that
PolicyCrypt enables privacy transformations in real-time on a realistic application
scenario. As a baseline, the evaluation uses a plaintext version to run the same
application with no encryption. The plaintext version sends unencrypted values
to the data transformer (no aggregation-based encodings). The data transformer
continuously forms windowed aggregates for each data stream before adding them
across the streams. This structure allows the plaintext version to scale to large
workloads. Note that there is no privacy controller involved in the plaintext version
because there are no privacy policies to enforce.
The data producers create random data streams with the stream generator de-

scribed in Section 8.1. Recall that the stream generator uses a Poisson process to
emulate a data producer workload in an application. The underlying exponential
distribution has a mean 1/λ of 0.1. This configuration results in an average of 10
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records per second from each data producer. The data producers use the standard
aggregation-based encoding ~x = [x, x2, 1]. All experiments aggregate data in 10-
second windows and use a grace period of 5 seconds to account for late-arriving
events. Considering the case study from Section 6.2, this corresponds to the following
query:

CREATE STREAM HeartRate (heartrateAvg , heartrateStdDev) AS
SELECT AVG(heartrate), STDDEV(heartrate)
WINDOW TUMBLING (SIZE 10 SECONDS , GRACE PERIOD 5 SECONDS)
FROM MedicalSensor BETWEEN 100 AND 1000
WHERE region = ’California ’ AND age = ’old’

For PolicyCrypt, each data producer has a separate privacy controller. This
scenario is the worst case because the MPC protocol involved in creating the
transformation tokens involves the maximum number of privacy controllers. Figure
8.8 shows the results of the end-to-end benchmark for transformations in the range
of 100 to 1000 participants. For privacy transformations in this range, the average
latency varies between 174ms and 2.4 seconds in PolicyCrypt compared to 90ms and
1s in the plaintext baseline.

The increasing latencies in the results for 800 and 1k participants indicate that
for both PolicyCrypt and plaintext, the stream processor that runs on two machines
starts to saturate. For up to 800 participants, the difference in average latency
between the two approaches is in-between 40ms and 143ms. In the experiment
involving 1k participants, two outliers in PolicyCrypt cause the difference to increase
to 479ms. Nevertheless, these results show that the overhead that PolicyCrypt
introduces compared to plaintext is small.
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9 Conclusion

The ever-growing demand for collecting and analyzing data is not expected to slow
down anytime soon. Organizations across all sectors recognize that data is a valuable
asset that has both enormous value to their businesses and a tremendous potential
to solve some of the hardest challenges societies are facing today. Think, for example,
of the COVID’19 pandemic, which started at the time of writing this thesis. Data
is the most crucial asset to control and contain the pandemic. Governments are
rushing to collect personal and sensitive data (e.g. location, people interactions) to
understand its spread and health impact. However, as we accumulate more and more
sensitive data, the issue of individual privacy is becoming more urgent. Adequately
addressing privacy in the current complex computing landscape is vital if we aim
to interconnect data and unlock its potential to the fullest while respecting the
individual’s privacy. The path for achieving this implies the need for developing
privacy tools that are easily blended in existing data analytics systems. This thesis
addresses the aforementioned pressing challenge with a new data privacy platform
design.
This thesis presents PolicyCrypt, a new privacy platform design for distributed

unbounded data that follows a user-centric model to privacy, allowing users to
articulate their preferences in the form of a simple privacy policy. Based on these
privacy policies, PolicyCrypt provides a framework to find a match between the
privacy interests of users and the objectives of a service provider. Instead of relying
on trust and manual compliance, PolicyCrypt proposes an end-to-end approach
that leverages cryptographic techniques to automatically enforce privacy-preserving
transformations on streaming data. Due to a clear separation of the data and privacy
planes, these transformations entail no more than a minor outlay for data sources,
which allows existing stream processing pipelines with resource-constrained data
producers to integrate PolicyCrypt seamlessly.

The evaluation based on a prototype implementation indicates that the overhead of
PolicyCrypt is modest (2.4 sec compared to 1.9 sec for 1k participants), which enables
large-scale low-latency data stream analytics on top of the platform. Furthermore,
the evaluation of the optimized secure aggregation protocol over multiple rounds
demonstrates an increase in performance by a factor of 55 over existing protocols.

In addition to the research questions addressed in this thesis, the architecture of
PolicyCrypt raises some new challenges that we believe are interesting to pursue in
further research. The following section briefly highlights some of these challenges
and discusses new ideas that originate from this work.
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9.1 Future Work

• Privacy Policy Extensions: PolicyCrypt supports privacy policies based on
aggregation and perturbation. Further research could investigate whether
cryptographic techniques are suitable for enforcing more complex privacy
policies beyond aggregation and perturbation. The constrained privacy policies
from Section 4.3 can serve as a starting point therefor.

• Privacy Policy Ramifications: The user-centric model of PolicyCrypt gives
users more control over their data by allowing them to express their preferences.
However, the ramifications of differential privacy budgets (ε, δ) or different
aggregation sizes within privacy policies often remain hazy, especially in
conjunction with other data. These doubts pose the question of whether these
privacy controls should be exposed to the user or be left to independent privacy
entities.

• Protection against Users: The work in this thesis investigates how users can
cooperate to protect each other’s privacy against an untrusted server. Even
though the privacy of an individual user remains protected, the consequences
of the PolicyCrypt approach are that a single malicious user can interfere
with privacy transformations and manipulate the result. Further work could
investigate the integration of protection mechanisms similar to what is done in
other systems [32]. As a result of this and in combination with the idea from
Section 6.4, privacy transformation might be able to include data from even
more streams.

• Incentive for Users: PolicyCrypt implicitly assumes that users have an
incentive to share their data with service providers. This is motivated by the
presumption that the service provider uses the data to offer a service that
directly benefits the user. Further research could investigate if these incentives
are sufficient, or if some form of data market is required to facilitate this
exchange within the boundaries of privacy policies.
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A Appendix

A.1 Random Graph - Connectivity

Theorem A.1 Let G(n, p) be a random graph generated via the Erdős–Rényi model,
then it holds that:

P [G(n, p) is disconnected ] ≤
n/2∑
j=1

(
e · n
j

(1− p)n−j
)j

Proof 1 The proof is from [90], but the appendix lists it for completeness. The first
step is to count the number of j-subsets S of vertices, such that there are no edges
between S and S̄. There are

(
n
j

)
such subsets, and each of the j vertices has n− j

possible neighbors outside of S. Let
(
V
j

)
denote the set of all j-subsets of the vertices,

then

E
[∣∣∣∣{S ⊆ (Vj

)
: no edges between S and S̄

}∣∣∣∣] =

(
n

j

)
(1− p)j(n−j)

≤
(
e · n
j

)j
(1− p)j(n−j)

=

(
e · n
j

(1− p)n−j
)j

where the inequality is a standard bound on binomial coefficients. Summing over
all j up to n/2, the expected number of subsets S of V of size at most n/2 such that
there are no edges between S and S̄ is

E

∣∣∣∣∣∣
S ⊆

n/2⋃
j=1

(
V

j

)
: no edges between S and S̄


∣∣∣∣∣∣
 ≤ n/2∑

j=1

(
e · n
j

(1− p)n−j
)j

If the graph is disconnected, then there is at least one subset S of the above type
since there must be a subset that is disconnected from the rest of the graph, and
either it or its complement has size at most n/2. Thus by Markov’s inequality, the
probability that the graph G(n, p) is disconnected (i.e. the graph has ≥ 1 of these
subsets) is bounded by:

P [G(n, p) is disconnected ] ≤ E[|{· · · }|]
1

≤
n/2∑
j=1

(
e · n
j

(1− p)n−j
)j
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