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Abstract

Machine learning algorithms continue to achieve remarkable success in a wide range
of applications. These advancements are possible, in part, due to the availability of
large domain-specific datasets, for training machine learning models. Hence, there
are expanding efforts to collect more representative data to train models for new
applications. This raises serious concerns regarding the privacy and security of the
collected data. The privacy ramifications of massive data collection in the machine
learning landscape have led both industry and academia to work on alternative
privacy-preserving technologies for machine learning. Federated Learning is one
such promising machine learning technologies that advocates for a new decentralized
learning paradigm that decouples data from model training, thus allowing users
to retain data sovereignty. However, the large-scale and decentralized nature of
federated learning opens it to a new set of privacy and integrity challenges. Ahead of
deploying federated learning in high-stakes, privacy-sensitive applications, we must
first understand its security and privacy.
This thesis sheds light on the privacy and integrity implications of federated

learning. The first part of this thesis consists of an empirical study that analyzes the
impact of integrity attacks on federated learning under different strategies, datasets,
network sizes, and participation rates. We use the insights from the empirical
study to design a new secure federated learning aggregation protocol that provides
stronger integrity guarantees. In its essence, the protocol restricts malicious client
updates by bounding the norm on top of secure aggregation using homomorphic
commitment schemes and zero-knowledge proofs. The use of asymmetric encryption
and zero-knowledge proofs introduces a significant overhead that makes the protocol
costly to use. To overcome this challenge, we explore and incorporate several
optimization techniques from machine learning and compression to make the protocol
applicable in practice. Finally, we perform an end-to-end evaluation of the prototype
implementation of the protocol. Our evaluation demonstrates that our optimizations
reduce the time per round needed from 802 seconds down to 120 seconds (6.82x)
for a deep-learning model of 62006 parameters, at a small cost of 0.0306 accuracy
reduction. Hence, this first performance assessment shows that our protocol has
significant potential for addressing practical security and privacy challenges in
federated deep-learning models.
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1 Introduction

Machine learning algorithms continue to achieve remarkable results in a wide range
of applications. These advances are enabled, in part, through an increase in the
availability of large datasets for training machine learning models. After realizing
the benefit that can be gained from data, efforts to centrally collect data have steeply
increased. However, this practice of large-scale data collection has raised severe
privacy and security concerns. Furthermore, the regular occurrence of unauthorized
sharing, selling and use of data, and data breaches, show that the current paradigm
of data centralization is untenable [33,45,46,54]. The work in this thesis addresses
the tension between user privacy and data utility, by providing a technique to extract
advanced utility from decentralized data under rigorous privacy and security guaran-
tees. Doing so contributes to the formation of a new set of essential applications in
crucial domains, by enabling accessibility of private data that is currently unavailable
due to confidentiality and privacy constraints.

The continuous abuse of user data has elevated the interest in alternative privacy-
preserving machine learning methodologies which aim at deriving utility from data
without compromising users’ privacy. Federated Learning [81] has emerged as
a promising machine learning approach that advocates a distributed computing
paradigm that decouples the ability to do machine learning from the need to store
the data in the cloud. In federated learning, a shared model is trained while privacy-
sensitive training data stays decentralized at the client and only small updates
specifically intended to train the model are sent to the central provider.
Although federated learning offers a promising solution for data privacy, its

decentralized nature opens it up to a host of integrity and privacy problems. Recent
work has shown that malicious clients can introduce backdoors into the shared
global model by sending malicious updates to the aggregation process [12,19,82,102].
Defenses proposed in prior work, which rely on the statistical inspection [48,99] or
on the use of Byzantine-robust aggregation algorithms [21, 31,83, 89,108], have been
shown to be circumventable [13]. Moreover, these defenses are incompatible with
secure aggregation, which, by design, prevents the inspection of individual client
updates; which prior work assumes is feasible by the central provider to protect
against information inference attacks [47,82,85].
Integrity attacks on federated learning are particularly challenging compared to

similar challenges in distributed learning. In this field, a range of Byzantine-robust
distributed learning algorithms have been proposed [10,11,35,40], which guarantee
convergence under the presence of Byzantine clients by relying on statistics of
individual client updates. In contrast, in federated learning, we are confronted with
an adversary performing a model poisoning attack that is harder to restrain because
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1 Introduction

it allows the model to converge but with a backdoor. Furthermore, it is impossible
to inspect individual client updates because they are inaccessible due to secure
aggregation. The focus of this thesis is then to develop a new secure aggregation
protocol for federated learning that is robust against integrity attacks from malicious
clients.

The research area regarding the integrity of federated learning models is not well
explored, and there exist many open questions. Existing attacks are challenging
to analyze because they are performed under different attacker goals, training
strategies, and environments. Conversely, little work has been done on applicable
defenses against these attacks and how these behave for different setups with varying
properties such as the attack strategy, dataset, network size, participation rate,
learning rate, and regularization.

In this thesis, we provide a thorough analysis of the integrity of models in federated
learning to develop a better understanding of this space. We classify and study the
impact of existing attacks and propose effective measures to restrict model poisoning
attacks by bounding the norm of client updates. To ensure compatibility with secure
aggregation, we propose cryptographic proofs to enforce constraints on the norm
bound without reducing client update privacy. However, the straightforward use of
zero-knowledge proofs comes at a high cost; therefore requires careful consideration
of the performance overhead. To this end, we propose several methods to improve
the scalability to make our robust, secure aggregation protocol applicable in practice.

1.1 Approach

This thesis presents a new secure aggregation protocol for federated learning that
ensures privacy and integrity. The protocol allows federated learning systems to be
deployed in large-scale and untrusted environments while preserving privacy and
model integrity. To achieve the privacy of client updates, we use homomorphic
commitment schemes to aggregate individual client updates, only revealing the
aggregate to the central provider. The design of this secure aggregation protocol
allows the integration of zero-knowledge proofs, which in our protocol are used
to enforce norm bounds on client updates to protect the model against model
poisoning attacks from malicious clients. Furthermore, we apply several optimization
techniques to make the protocol applicable to large-scale deployments.

1.2 Contributions

More concretely, the contributions of this thesis are:

• The development of an extensive framework that supports the simulation of
integrity attacks and defenses, as well as scalability optimizations under a wide
range of configurations, models, and datasets, to analyze adversarial federated
learning setups;
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1.3 Outline

• Conduct a thorough empirical analysis to understand the impact of integrity
attacks on federated learning;

• The design of a new secure and robust federated learning protocol that efficiently
incorporates zero-knowledge proofs to enforce norm bounds to defend against
model poisoning attacks;

• A prototype implementation of the secure and robust federated learning
protocol;

• The proposal and implementation of several performance optimizations to the
secure and robust federated learning protocol to improve the scalability of the
protocol;

• A comprehensive evaluation of the federated learning system to quantify the
performance of our optimized secure and robust federated learning protocol
in terms of computation time, bandwidth, and accuracy, against an insecure
federated learning baseline and an unoptimized secure federated learning
baseline.

1.3 Outline

In Chapter 4, we provide an extensive analysis of integrity attacks and defenses on
federated learning and identify norm bounding as a suitable defense mechanism.
With the insights from the analysis, we outline the design of a privacy-preserving
aggregation protocol that can enforce these norm bounds in Chapter 5. In addition,
we propose performance optimizations that improve the scalability of our protocol.
Chapter 6 provides an overview of a prototype implementation of the protocol. After
that, we perform an evaluation of the implementation in Chapter 7. Finally, we
conclude the thesis in Chapter 8 by summarizing the thesis work, describing the
potential impact of the project, highlighting open challenges, and advising directions
for future work.
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2 Background

In this chapter, we discuss the background knowledge that is relevant to under-
standing this thesis. This thesis lies at the intersection of the machine learning and
security domains; hence, this chapter is structured in two parts. In the first part, we
discuss background material on machine learning, distributed learning, and federated
learning. In the second part, we cover the necessary cryptographic primitives, secure
aggregation, and zero-knowledge proofs.

2.1 Machine Learning

Machine learning is the field of creating algorithms to perform a task without explic-
itly programming the functionality of the algorithm. Machine learning algorithms
are used for an increasingly wide range of applications where traditional algorithms
would be infeasible to use due to the complexity of the problem at hand. For
example, machine learning algorithms are currently used for applications such as
spam filtering [8, 38] and self-driving cars [2, 106]. In this section, we start by giving
a high-level overview of machine learning and then delve into the underlying core
algorithms.

To illustrate the concept of machine learning, let us regard the following example
that is used throughout the section. We would like to solve the task of classifying
images of objects and animals, such as boats, cars, cats, and dogs, in the correct
category. The problem, also referred to as the task, is to determine to which class
a given image belongs. We assume in this case that there is a fixed number of
output classes, in our example 10. An illustration is given in Figure 2.1. This
example problem is a fairly complicated task that would take a considerable amount
of time to solve using an algorithm that could cover all the different possible input
images. Additionally, if we want to write an algorithm for this task, there is a
more philosophical question that we must explicitly answer, namely, what exactly
determines the image of a cat? While we all have an intuitive definition of what
constitutes an image of a cat, it would be very difficult to come up with an exact
mathematical description.

Therefore, instead of relying on a crafted algorithm to solve this task, we can resort
to a data-driven approach to solve this task; in other words, train a machine learning
model for this purpose. A machine learning model is a set of tunable variables
that represent a mapping f from the input distribution to the required output
distribution. We try to find the right mapping f by identifying the features in the
training data that define this mapping, which is also referred to as learning. For this
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Input

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Model (classifier) Label

Figure 2.1: The CIFAR-10 image classification task. The model takes a 32x32 image
as input and gives a label out of 10 classes as output.

learning we use a task dataset, consisting of tuples of an input x with corresponding
label y, is often split into two groups, training data D = {(xi, yi)}ni=1 and validation
data D′ = {(x′i, y′i)}n

′
i=1. In our example, the dataset consists of 32× 32 pixel images

of the various objects and animals, labeled with the corresponding class.
Generally, machine learning models are used in two phases. The previously

mentioned learning is referred to as the training phase, whereas applying the trained
model to make predictions on new data is done in the inference phase. During
training, the model tries to learn important features from training data using a
learning algorithm. Learning algorithms can be classified as supervised learning,
unsupervised learning, or a combination thereof, such as semi-supervised learning,
depending on the presence and quality of the labels for the training data. We use
supervised learning in our image classification example because we train the machine
learning algorithm on images with corresponding labels.

Model architecture: At a high level, a model can be seen as a network of nodes,
organized in layers, as shown in Figure 2.2. Each node represents a computational
step and contains references one or more to other nodes from which it receives input.
Additionally, every node contains a variable, or weight, that is adjustable by the
learning algorithm. The model’s mapping function f is defined by the weights and
biases w. At every node, inputs are multiplied by the node’s weight, a bias is added,
and a differentiable non-linear function is applied. Given the i-th node xij with
weight aij and bias bij at layer j, connected to all nodes in the previous layer j − 1
of size Nj−1, the computational step is defined as follows with activation function σ:

xij = σ(

Nj−1∑
k=1

aijxk(j−1) + bij)

The choice of the model architecture together with the non-linear functions allow
so-called deep networks to model complex functions. The last layer is referred to

6
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...
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Figure 2.2: Example of a machine learning model architecture for a classification task
using fully-connected layers. The network is represented as a directed
graph that is organized in layers. The first layer represents the values
of the input I ∈ Rd given to the network. The nodes in the middle
two layers each represent a weight and bias to transform the input with.
The final layer represents the probability distribution that the network
assigns to each output class. The biases in the nodes in the middle layers
are omitted for clarity.
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as the output layer and can be seen as the output vector. In a classification task,
the output vector is the size of the number of classes C and a softmax function is
applied to normalize output vector, resulting in a probability distribution. Every
element pc ∀c ∈ [0, C) in the output vector then represents the confidence of the
model of the prediction in that specific class. In our example, this translates to the
output layer containing 10 nodes, one for every class. The output class of the model
is the index of the weight that contains the highest value.

Loss function: The functionality that we want to achieve is that the model gives
us the correct output label for a given input. In the case of our example, the model
should give us the correct classification for the object that is depicted in the input
image. We define this correct behavior in terms of a loss function, embedded in
an optimization problem. Ideally, we would like the network to give us the correct
prediction for every class with 100% confidence in that class, and 0% confidence in
the other classes. We define this behavior in a loss function `,

`ideal(y, ỹ) = I(arg max (y), arg max (ỹ))

where I is the identity function. The loss function takes the output vector y as
prediction input, as well as the one-hot encoding of the index of the correct label ỹ.
The learning algorithm requires every operation in the model to be differentiable,
for reasons we will clarify in the next section. Unfortunately, this loss function is
not differentiable with regards to w. In order to overcome this, the cross-entropy
loss function is often used instead of the identity function:

`xent(y, ỹ) =
C∑
c=0

ỹc log(yc)

2.1.1 Stochastic Gradient Descent

Learning problems are often formulated as optimization problems with the objective
of minimizing the average loss over all samples in the training dataset:

minimize
w

1

n

N∑
i=1

`(fw(xi), ỹi)

For most tasks and networks, the loss function combined with the model is non-convex,
resulting in an NP-hard optimization problem. Therefore, a learning algorithm is
used to get an approximation of the optimization problem in reasonable time. In
supervised learning, the most widely used learning algorithms are based on gradient
descent. These algorithms perform optimization in steps based on the gradient of `
and f .
Now that we have established what a differentiable model fw and loss function

` are, we define the learning algorithm. From optimization theory, we know that

8



2.1 Machine Learning

we can find the extremes of a convex function f by taking the gradient and moving
along the direction of the gradient, as shown in Figure 2.3. For our model f , we can
derive the gradient using the backpropagation algorithm. In backpropagation, the
gradient is calculated with respect to each node in the model, moving backwards,
starting from the nodes in the output layer and ending at the first layer.
After deriving the gradient for each node for the whole dataset, we update the

weights in the nodes. At each training iteration t, the weights of the model are
updated with a step η in the opposite direction of the gradient

wt+1 = wt − η∇`(wt)

where η is also referred to as the learning rate. We take a step in the opposite
direction because we are trying to minimize the loss function. Often, the learning rate
is decreased with the number of iterations to improve convergence. However, because
most widely-used combinations of loss functions and models are not convex, we are
not guaranteed to reach a global minimum, but only a local minimum. Nevertheless,
in practice, it has been shown that finding a local minimum is sufficient for good
performance.
While the gradient descent algorithm works well in theory, it is computationally

expensive because, for every step, it requires a pass over the full training dataset,
which can be very large. In order to make this more efficient in practice, stochastic
gradient descent is used, shown in the Stochastic Gradient Descent Algorithm. In
stochastic gradient descent, the gradient is computed for the loss of a randomly
selected subset of samples called a minibatch with size b:

wt+1 = wt − η

b

b∑
i=0

∇`i(wt)

The convergence of the model is influenced by the minibatch size b. For instance,
using a larger minibatch size may smoothen convergence because the gradient is

`(w)∇`(w)
η∇`(w)

Figure 2.3: Schematic visualization of gradient descent on a loss function `.
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computed over the average of b training inputs. Additionally, a larger minibatch size
can provide computational improvements up to a certain point due to the potential
for parallellization of the operations.

Algorithm 1 Stochastic Gradient Descent
1: input: Initial weights w0, number of iterations I, samples D, step size η, loss

function `
2: for i = 1 to I do
3: Bi ⊂R D . Draw a batch of random samples
4: Pi ←− fwi

(xBi
) . Calculate model’s predictions

5: Li ←− `(Pi, yBi
) . Compute loss

6: ∇Li ←− δLi

δwi
. Compute gradient using backpropagation

7: wi+1 ←− wi + η∇Li . Update weights
8: end for
9: output wi

2.1.2 Distributed Learning

Machine learning is being applied for increasingly difficult tasks that often require
massive datasets and computational capabilities beyond what is supported by a
single machine’s hardware. Distributed learning was conceived in an attempt to
overcome these computational and memory bottlenecks.

In distributed learning, machine learning training is done by multiple worker nodes
controlled by a central entity that execute the learning algorithm in parallel in a
training round. The nodes operate on a shared model that is synchronized after
every round. Every node has access to a training dataset, which can be unique per
node or be the same dataset for all nodes. A commonly used training algorithm
is Distributed Stochastic Gradient Descent (DSGD), this algorithm is a flavour of
Stochastic Gradient Descent (SGD) that is optimized for distributed settings.

2.1.3 Federated Learning

Federated learning [81] is a machine learning setting in which a loose federation
of clients trains a shared model, orchestrated by a single server while keeping
training data decentralized. An important difference between federated learning
and distributed learning is the trust model. Distributed learning takes place in
a datacenter where the training data and the setup is fully controlled by a single
entity. In federated learning, training data is kept local at the clients that act as
independent entities, often located outside of the datacenter, as shown in Figure 2.4.
Federated learning is particularly suitable for applications where it is problematic to
share client data in the clear, i.e., when there are privacy concerns or if there is a
bandwidth limitation. We now give two typical examples where federated learning
is particularly suitable. One typical example of a federated learning application
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is to train a language model that predicts the next word as a user types on their
phone’s keyboard [57]. This setup can involve millions or even billions of phones and
is referred to as cross-device federated learning [65]. A second widely used example
of federated learning is between multiple organizations wanting to train a shared
machine learning model, for example, a consortium of health care providers [86].
Each organization owns a local dataset that it does not want to share with the
other participants, but that is too small to train a model on and get meaningful
insights from. With federated learning, organizations can collaboratively train a
model while keeping their data private, enabling the creation of shared learning that
was previously unattainable due to privacy concerns.

Figure 2.4: Federated learning architecture. Clients submit updates to the central
aggregation server, while data stays decentralized.

Federated training algorithm: Training in federated learning is done using the
FederatedAveraging (FedAvg) algorithm. FedAvg was introduced as an abstrac-
tion of large-batch Distributed Stochastic Gradient Descent (DSGD) and can be
configured with several parameters. First, the fraction of clients that participate
in a round C. Second, the number of local epochs each client trains E, which can
be used to reduce communication costs by aggregating less often. Third, the local
batch size B used by the clients. If we set C = 1, B =∞, E = 1, we are left with
exactly the large-batch Distributed Stochastic Gradient Descent (DSGD) algorithm
from Chen et al. [30]. These parameters can be tuned to find an exact tradeoff
between communication and computational costs. For instance, if communication
is a bottleneck, it may be useful to increase the number of local epochs each client
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performs, to increase computation time but to decrease the frequency of aggregation.
It has been shown that increasing the number of local epochs is an effective measure
and does not reduce accuracy significantly [23].
During training with FedAvg, each node draws samples from its local dataset.

Ideally, these samples are IID drawn from a local random variable that follows a
distribution similar to the global data distribution. However, in the real world, per
client samples are often correlated and non-IID over the clients. Nonetheless, it
has been empirically shown that algorithms such as FedAvg do converge in practice
without the IID and convexity assumption. Additionally, it has been shown by Li et
al. [77] that the FedAvg algorithm converges for a convex objective without requiring
the IID assumption.

Weight vector The shape of a model’s weights differ per network and the kind of
layers that are used. For example, weights in a convolutional layer are organized in a
matrix shape, instead of a vector. In the rest of this thesis, for simplicity, we assume
a client generates an update in the form a vector w. This vector w is serialized
by the client from the model weights according to the Flatten Model Weights
algorithm. Upon receiving w, the server deserializes w to its original weight and
layer structure.

2.1.4 Adversarial machine learning

In the last decade, there has been an increasing interest in adversarial machine
learning to explore the security risks of machine learning. In this research area,
so-called adversarial samples are crafted in an attempt to mislead machine learning
models. Insights from this field are relevant to backdoor attacks in federated learning
because similar techniques are used. Moreover, the field has developed a theoretical
foundation to reason about the robustness against adversarial machine learning,
which could be relevant to reason about model poisoning attacks in federated learning.
In this section, we briefly describe black- and white-box access and the algorithms
used to generate adversarial samples.

Adversarial samples are malicious inputs that look normal to the human eye but
are actually carefully crafted to mislead a neural network into giving the wrong
output. In our image classification example, given a regular benign input image,
an adversary adds small amounts of noise to specific parts of the image to fool
the classifier. The adversary has to know exactly what noise to add and can learn
this in two ways, depending on its access to the model. Generally, two settings for
adversarial model access are used, black-box access and white-box access:

Black-box The adversary can interact with the model by providing inputs and
receiving outputs, but can not see what calculations are performed inside the
model, or what the parameter values are. A real-world example of black-box
access is when the adversary has access to a machine learning model exposed
through an API on the internet.
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Algorithm 2 FederatedAveraging
1: Input: The K clients are indexed by k; C is the fraction of clients selected in

each round, B is the local minibatch size, E is the number of local epochs, and
θ is the learning rate.

2: Server executes:
3: initialize w0

4: for t = 0 to T do
5: m←− max(C ·K, 1)
6: St ←− (random set of m clients)
7: for each client k ∈ St in parallel do
8: wk

t+1 ←− ClientUpdate(k, wt)
9: end for
10: wt+1 ←−

∑K
k=1

nk

n
wkt+1

11: end for
12:
13: ClientUpdate(k, w):
14: for each local epoch i from 1 to E do
15: w = Optimize(w) . Optimize using training algorithm such as SGD
16: end for
17: return w to server

Algorithm 3 Flatten Model Weights
1: input: Model consisting of layers consisting of weightsM : {L}, layer L : Rn×m

2: w = []
3: for l inM do
4: w = flatten(l) . Flatten the weights in l
5: w = append(w, w) . Append to flattened array
6: end for
7: output w

White-box The adversary has full access to the model and the parameter
values. This means the adversary can perform arbitrary computations on the
model. In federated learning, the adversary has white-box access, because
every client receives a copy of the global model.

If an adversary has black-box access, there exists statistical techniques to infer what
noise should be added to the image [87]. In contrast, with white-box access, creating
an adversarial sample is simple. The adversary performs steps of gradient descent
on input image i to alter it in order to make the model assign the wrong label.
To ensure the adversarial image î is not too different from the original image, the
adversary defines a constraint for the adversarial image. An example of a constraint
is that the adversarial image î should be in some ball of radius B around i:

‖̂i− i‖2 ≤ B
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To perform gradient descent under this additional constraint, the Projected Gradient
Descent (PGD) algorithm is used. PGD is a generalization of SGD that allows the
enforcement of additional constraints on the result set. The PGD algorithm is also
used in federated learning settings to craft model poisoning attacks [102].

Algorithm 4 Projected Gradient Descent
1: input: Initial weights w0, number of iterations I, samples D, step size η, loss

function `, set of feasible weights under constraint C
2: for i = 1 to I do
3: Bi ⊂R D . Draw a batch of random samples
4: Pi ←− fwi

(xBi
) . Calculate model’s predictions

5: Li ←− `(Pi, yBi
) . Compute loss

6: ∇Li ←− δLi

δwi
. Compute gradient using backpropagation

7: yi+1 ←− wi + η∇Li . Update weights
8: wi+1 ←− arg minx∈C‖yi+1 − x‖ . Project back onto the feasible set
9: end for
10: output wi

2.2 Cryptography

In this section, we cover background material on the cryptographic techniques used
in this thesis.

2.2.1 Primitives

We start by covering cryptographic primitives that are referenced in this work. For
a complete explanation, we refer the reader to [24].

Group homomorphism: Many cryptosystems are defined over finite mathematical
structures such as groups or finite fields. Cryptosystems can provide functionality
by making use of special properties of some groups. One of these properties is the
existence of a group homomorphism between two groups. A group homomorphism
is a function in which the group operation between the groups is preserved. An
example of this is a partial homomorphic encryption such as ElGamal, that relies on
a group homomorphism between Zp and a cyclic group G with prime order p.

Definition 2.1. A group homomorphism is a map f : G −→ H between two groups
(G, ?) and (H,⊕) that preserves the group operation [25], such that

f(g1 ? g2) = f(g1)⊕ f(g2) ∀g1, g2 ∈ G
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Pseudorandom generator: Pseudorandom generators (PRG) are used to expand a
small random value into a larger random value. They are useful in many applications
such as to reduce the amount of bandwidth required when transferring randomly
generated values. Instead of transferring the multiple random values, a seed is sent
and then expanded into the many values using a PRG.

Definition 2.2. A pseudorandom generator (PRG) is a function G that, given an
input seed s from the input space S, produces an output from the output space R.
A PRG G is secure if, given an input s, G(s) is computationally indistinguishable
from random r ∈ R.
Typically, the input space S is a bit-string {0, 1}l, and R = {0, 1}L, where l� L.

2.2.2 Commitment Scheme

Commitment schemes are an important primitive and is used in many cryptographic
protocols, such as zero-knowledge proofs. Intuitively, a commitment scheme can be
viewed as a lockbox in which the sender locks a secret value and sends it to the
receiver. The content of the box can not be altered by the sender, and not seen by
the receiver. The sender can reveal the value of the lockbox by giving the key to
the receiver, after which they can open the box and access the secret value. In this
section, we explain what a commitment scheme is, and discuss two instantiations of
commitment schemes that are relevant to this thesis, namely ElGamal and Pedersen
commitments.

A commitment scheme is a cryptographic protocol between a sender and a receiver.
The sender commits to a value or statement. After committing, the sender is unable
to change the underlying value of the commitment. The sender is able to reveal the
underlying value to the verifier at a later stage, which is also referred to as opening
the commitment.

Definition 2.3. A commitment scheme is a pair of protocols (Commit, Open) where
the sender inputs x in Commit and the receiver outputs x′ after Open [61]. The
protocol must satisfy:

– (Correctness.) If the receiver is honest, then x′ ∈ {x,⊥}
If both sender and receiver are honest, then x′ = x.

Additionally, the protocol is secure when the following two properties are met:

– (Binding.) After Commit, the value x is fixed.

– (Hiding.) In Commit, the receiver does not learn x.

Moreover, a commitment scheme can be:

– (Homomorphic.) Commit(a+ b) = Commit(a) · Commit(b)

We now discuss two instantiations of commitment schemes.
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Pedersen Commitments: The Pedersen commitment scheme is a widely used
commitment scheme that is based on the hardness of computing a discrete logarithm
in a group [88]. Let (G, ?) be a group of prime order p and let g and h be two
publicly known generators of G. The Pedersen commitment function Cp maps an
input x ∈ Zp and a randomly chosen value r ∈ Zp to an element in G:

Cp(x, r) 7→ gxhr

Pedersen commitments are hiding, because given a commitment z, the receiver
can not determine what input x was used to generate z. This is because, for every
candidate value x′, it is possible to find a value r′ that makes the commitment equal
to z. We refer to this as perfectly hiding, because even if an attacker would have
infinite computing capabilities, they could not recover the original x from z, as every
x′ is equally likely.
Furthermore, Pedersen commitments are not perfectly binding because a prover

with infinite computing capabilities could open a commitment z with an arbitrary x′
by generating the corresponding r′. However, because finding the discrete logarithm
is hard in a group of prime order, we assume there exists an upper bound on the
speed with which this can be done. From this follows that Pedersen commitments
are computationally binding because it is currently infeasible1 for a prover to open a
given Pedersen commitment to an arbitrary x′.
It is important for the security of the scheme that the prover does not know the

discrete logarithm of g with respect to h and vice-versa. This can be ensured by
selecting g and h according to a sequence of steps to get verifiable randomness. If
the prover knows the discrete log e such that h = ge, they can derive the following
equality:

gxhr = gx(ge)r = gxger = gx+er

With this, the prover can compute an arbitrary opening (x′, r′) by finding a pair
(x′, r′) that satisfies the equality:

x′ + er′ = x+ er

Additionally, the Pedersen commitment scheme is homomorphic, following Defini-
tion 2.1:

Cp(x, r) ? Cp(x
′, r′) = gxhrgx

′
hr
′

= gx+x′hr+r
′

= Cp(x+ x′, r + r′)

ElGamal commitments: The ElGamal commitment scheme is another scheme
that is relevant to this thesis [41]. Similar to Pedersen commitments, ElGamal

1Assuming the group order p is large enough.
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commitments operate on a group (G, ?) of prime order p with independently cho-
sen generators g and h. However, the difference when comparing to Pedersen
commitments is that ElGamal commitments contain an additional element of G.

Ce(x, r) 7→ (gxhr, gr)

We define the operator ⊕ over tuples of elements of G:

⊕ : G2 7→ G2

(x1, y1)⊕ (x2, y2) = (x1 ? x2, y1 ? y2)

In an ElGamal commitment, the extra group element gr binds the commitment to
a specific random value r. This alters the binding and hiding properties of ElGamal
commitments with regards to Pedersen commitments. First, ElGamal commitments
are only computationally hiding, because adversary with unlimited computing power
can recover r using a brute-force algorithm. ElGamal thus relies on the hardness of
the discrete log for its hiding property. Second, ElGamal commitments are perfectly
binding, because the prover only has one way to open an ElGamal commitment, as
it is bound to a specific r. Even with unlimited computing power, the prover can
not compute a different opening (x′, r′) that satisfies a given ElGamal commitment.
Furthermore, ElGamal commitments are homomorphic:

Ce(x, r)⊕ Ce(x′, r′) = (gxhr, gr)⊕ (gx
′
hr
′
, gr

′
)

= (gx+x′hr+r
′
, gr+r

′
)

= Ce(x+ x′, r + r′)

2.2.3 Diffie-Hellman Key Exchange

The Diffie-Hellman key exchange protocol is one of the earliest key exchange protocols
that were introduced in asymmetric cryptography. The protocol allows parties to
establish a shared secret over an insecure channel, i.e. an adversary can read all
messages sent over the channel.
The protocol uses modular exponentiation as a trapdoor function that has some

transitive properties. Formally, let G be a group of prime order p with generator g,
we define the modular exponentiation function as:

f : Zp 7→ G

f(x) = gx mod p

The modular exponentiation function is transitive in the exponent: (ga)b = gab =
(gb)a, which is important for the protocol to work. Furthermore, modular exponenti-
ation is a trapdoor function under the assumption the computing the discrete log x
for z = gx is hard.

17



2 Background

Alice Bob

g←−−−−−−→
a ∈R G
A← ga

A−−−−−−−−→
b ∈R G
B ← gb

B←−−−−−−−−
gab = Ba = (gb)a gab = Ab = (ga)b

Figure 2.5: The Diffie-Hellman key exchange protocol establishes a shared secret gab
between two parties.

The protocol between two parties Alice and Bob shown in Figure 2.5 works as
follows:

1. Alice and Bob agree on a common generator g for the group.

2. Alice chooses a random value a ∈ Zp, computes A = ga and sends A to Bob.

3. Bob chooses a random value b ∈ Zp, computes B = gB and sends B to Bob.

4. Alice computes the shared secret gab with the message she has received from
Bob and her own secret gab = Ba = (gb)a.

5. Bob computes the shared secret gab with the message he has received from
Alice and his own secret gab = Ab = (ga)b.

Both parties now agree on a shared secret gab, without it ever being sent over the
insecure channel. Concretely, the secret is secure under the assumption that it is
infeasible for an attacker to compute a from ga and b from gb.

2.2.4 Secure Aggregation

A secure aggregation protocol solves the problem of computing a statistic on multiple
private inputs without revealing the individual inputs to any participant, even a
central aggregation server. Given a server s and set of n clients with private data
d1, d2, d3, ..., dn ∈ D, and a function to compute a statistic F : Dn −→ O where O is
the set of possible values of the statistic, the goal of a secure aggregation protocol is
to compute F while keeping the inputs private and only revealing the output to s.
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Secure aggregation protocols are based on different cryptographic primitives,
such as pairwise additive masking [9, 52], partially- or fully-homomorphic threshold
encryption [71], secret sharing [49], and garbled circuits [14]. Reyzin et al. [93]
provide an abstraction of secure aggregation by defining Large-scale One-server
Vanishing-participants Efficient MPC (LOVE). Additionally, they formalize the
definition of Homomorphic Ad-Hoc Threshold Encryption (HATE) schemes and
show how they can be used to build LOVE protocols.

In the context of federated learning, secure aggregation can be applied to protect
parties’ contributions as these can reveal sensitive information. The first secure
aggregation protocol for federated learning was proposed by Bonawitz et al. [23]. In
this protocol, secure aggregation is used for clients to submit their privacy-sensitive
model updates encrypted such that only the aggregated model is revealed to the
server. The protocol works as follows, given a set of clients U that want to compute
the sum over their secret values xu. Each pair of clients (u, v), u < v agrees on a
shared secret su,v using a key agreement scheme such as Diffie-Hellman. We assume
the existence of an arbitrary order relation < on U . Each client u then either adds or
subtracts its shared values with each client from xu, based on the relative ordering
of u and v:

yu = xu +
∑

v∈U :u<v

su,v −
∑

v∈U :u>v

sv,u

The clients then send their yu to the aggregator. After receiving all shares, the
aggregator computes the sum of the shares. The pairwise shared secrets cancel out,
because each secret between a pair of clients su,v was added to and subtracted from
the aggregate once:

z =
∑
u∈U

yu

=
∑
u∈U

(
xu +

∑
v∈U :u<v

su,v −
∑

v∈U :u>v

sv,u

)
=
∑
u∈U

xu

(2.1)

For the element-wise aggregation of a vector of values xu typical in federated
learning, the protocol works in a similar way. In this case, the vectors are aggregated
element-wise and the shared secrets are used as input to a Pseudo-Random Generator
(PRG) to generate a shared vector of secret values. Moreover, the protocol has
additional mechanisms to handle client dropouts and is robust against actively
adversarial clients.

2.2.5 Zero-Knowledge Proofs

A zero-knowledge proof is a protocol in which one party proofs to another party of a
statement or of knowledge of a value, without revealing any additional information.
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Zero-knowledge proofs have many applications due to their privacy-preserving prop-
erty, for example, in private cryptocurrency transactions [96] or for authentication
without transmitting a hash of a password [4]. This section is structured as follows.
First, we give an example of a well-known zero-knowledge proof. Then, we formalize
the notion of interactive proofs and zero-knowledge. Next, we go deeper into proofs
of knowledge, a particular kind of interactive proof. After, we show a method of
proving a particular protocol is a zero-knowledge proof of knowledge as introduced
by Maurer [80].

Schnorr’s protocol: In order to provide some context, we first give an example
of a zero-knowledge protocol. Given a cyclic group H with generator h and prime
order q, this protocol is used to proof the knowledge of a discrete logarithm x of a
given z ∈ H, and is known as Schnorr’s protocol [97]. With this protocol, a prover
can proof knowledge of the discrete logarithm x without revealing x itself. There
is no way for the prover to cheat, unless they are able to predict the challenge c
that the verifier will send. If the verifier chooses c uniformly at random, the prover
has a chance of 1

|C| . In order to further reduce this cheating probability, the prover
and verifier execute this protocol multiple, say n, times to reduce the probability of
cheating to 1

|C|n , which is considered negligible.

Prover Verifier
knows x knows z = hx

k ∈R H
t := hk

t−−−−−−−→
c ∈R C ⊆ Zq

c←−−−−−−−
r := k + xc

r−−−−−−−→
check hr ?

= t ∗ zc

Figure 2.6: Schnorr’s protocol

Interactive proofs: Schnorr’s protocol is a proof of the statement that the prover
knows a certain x. Furthermore, the proof is interactive because the prover and
verifier engage in an exchange of messages in the protocol. This is in contrast to
conventional proofs of a statement, which consists of a sequence of verifiable steps
that start at one or more axioms and lead to statement to be proved without any
interaction between the prover and the verifier. As opposed to a conventional proof,
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an interactive proof is a protocol defined as a protocol between a prover P and a
verifier V . An interactive proof has several motivations over a conventional proof.
One motivation is that an interactive proof can be made such that it only transfers
the conviction of the statement being true, and does not reveal any additional
information.

More formally, an interactive proof is defined as the interaction between a pair of
two programs (P, V ). An interactive proof must have two properties, completeness
and soundness. Completeness means that an honest prover P will convince an honest
verifier V , and soundness means that a dishonest prover P can not convince the
verifier V of a false statement. The interaction between P and V creates a so-called
transcript, denoted with T . T contains all the messages that have been sent between
the two parties.

Zero-Knowledge: An interactive proof is zero-knowledge, if even a dishonest
verifier V̂ does not learn anything about the protocol that he did not know before.
This is captured by the notion of simulation, first introduced by Goldwasser [51]. V̂
could create a transcript T ′ by simulating the entire protocol by himself, without
interacting with P .

Definition 2.4. A protocol (P, V ) is zero-knowledge if for every efficient program
V̂ there exists an efficient program S, the simulator, such that the output of S is
indistinguishable from a transcript of the protocol execution between P and V̂ . If the
indistinguishability is perfect, i.e., the probability distribution of the simulated and
the actual transcript are identical, then the protocol is called perfect zero-knowledge.

Correspondingly, if an interactive proof is zero-knowledge, any transcript T of a
real interaction between P and V̂ can not be used by V̂ to convince another party,
because V̂ could have generated it himself. This property is called non-transferability
and holds for every zero-knowledge interactive proof.

Proofs of Knowledge: As stated before, we are interested in proofs of knowledge.
A proof of knowledge is an interactive proof where the prover tries to convince the
verifier of knowing a certain value. Formally, what knowledge is, corresponding to a
value z, is defined by the following verification predicate:

Q : {0, 1}∗ × {0, 1}∗ → {false, true}
For a value z, the prover claims to know a value x such that Q(z, x) = true. The

value x is also referred to as a witness of z. We will now state the formal definition of
a proof of knowledge given by Feige, Fiat, and Shamir [43]. The definition captures
the notion that executing the protocol successfully implies the knowledge of a witness
x such that Q(z, x) = true [80].

Definition 2.5. An interactive protocol (P, V ) is a proof of knowledge for predicate
Q if the following holds:
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– (Completeness.) V accepts when F has as input an x with Q(z, x) = true.

– (Soundness.) There is an efficient program K, called knowledge extractor, with
the following property. For any (possibly dishonest) P̂ with non-negligible
probability of making V accept, K can interact with P̂ and outputs (with
overwhelming probability) an x such that Q(z, x) = true.

Example 2.2.1. Predicate Q for the knowledge of a discrete log x for y with respect
to g:

Q((g, y), (x)) = (y
?
= gx)

Proving the security of an interactive protocol: Maurer [80] showed that many
of the previously found three-step zero-knowledge protocols are actually instantiations
of the same protocol. He defines a generic protocol that is a zero-knowledge
proof of knowledge to proof the knowledge of a pre-image of a one-way group
homomorphism, provided two special properties are met. Conversely, we can treat
this as a straightforward method to proof these security properties of any protocol.
Similarly, this theory is of interest to our work, because it helps us proof the security
properties of our protocol. Therefore, we describe the necessary theorems and steps
of this method. We start by introducing the a definition that captures the special
property that allows us to argue about the soundness of a proof of knowledge.

Definition 2.6. Consider a predicate Q for a proof of knowledge. A three-move
protocol round (prover sends t, verifier sends c, prover sends r) with challenge space
C is 2-extractable if from any two triples (t, c, r) and (t, c′, r′) with distinct c, c′ ∈ C
accepted by Vic one can efficiently compute an x with Q(z, x) = true

With the following theorem, we can show that the 2-extractability property of a
protocol implies that it is a proof of knowledge.

Theorem 2.2.1. An interactive protocol consisting of s 2-extractable rounds with
challenge space C is a proof of knowledge for predicate Q if 1/|C|s is negligible.

Proof. We need to exhibit a knowledge extractor K. It can be defined by the
following simple procedure:

1. Choose the randomness for P̂ .

2. Generate two independent protocol executions between P̂ and V . (with the
same chosen randomness for P̂ ).

3. If V accepts in both executions and the challenge sequences were distinct,
then identify the first round with different challenges c and c′ (but, of course,
the same t). Use 2-extractability to compute an x, and output it (and stop).
Otherwise go back to step 1.
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If the success probability of P̂ is non-negligible, we can show that the expected
running time of the knowledge extractor is polynomial.
Now that we have the first theorem towards a proof of knowledge, we have to

look at the zero-knowledge property. We need to define another special property
of a protocol round, called c-simulatability, which is required to construct the
zero-knowledge simulator.

Definition 2.7. A three-move protocol round (prover sends t, verifier sends c,
prover sends r) with challenge space C is c-simulatable if for any value c ∈ C one
can efficiently generate a triple (t, c, r) with the same distribution as occurring in
the protocol (conditioned on the challenge being c).

Using this definition, we get the following theorem that implies that any protocol
with c-simulatable rounds is zero-knowledge.

Theorem 2.2.2. A protocol consisting of c-simulatable three-move rounds, with a
uniformly chosen challenge from a polynomially-bounded (per-round) challenge space
C, is perfect zero-knowledge.

The proof of this theorem is omitted, but we describe the basic idea. To simulate
round i the simulator samples ci uniformly and generates the (ti, ci, ri) triple using
the c-simulatability property. The simulator then checks if V̂ would actually choose
ci as the challenge in round i. If the check succeeds, the (ti, ci, ri)-triple is appended
to the transcript for that round, otherwise the round is started. Note that this
assumes that V̂ must be rewindable.

Group homomorphisms:

We now formalize the notion of a homomorphism to be able to reference it in
our generic protocol. We consider two groups (G, ?) and (H,⊕) where the group
operators ? and ⊕ are efficiently computable. Recall from Definition 2.1 that a
function f : G→ H is a homomorphism if

f(x ? y) = f(x)⊕ f(y)

In the next steps, we will assume f to be one-way, i.e. z = f(x) is efficiently
computable, but computing x for a given z is infeasible. We do this because only in
that case it makes sense for a prover to claim knowledge of a the pre-image x of z
where z = f(x). If f would be efficiently invertible, any verifier could get x from z,
and a zero-knowledge protocol would be useful for this purpose. However, even if
f turns out to be not one-way, the security guarantees of our protocol would still
hold.
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Generic Protocol

The protocol due Maurer [80] in Figure 2.7 is an abstraction of many previously
given proofs of knowledge protocols. The protocol is a proof of knowledge of a value
x such that z = [x], for a given z, given that the two conditions in Theorem 2.2.3
are met

Prover Verifier
knows x knows z = [x]

k ∈R G
t := [k]

t−−−−−−−→
c ∈R C ⊆ Zp

c←−−−−−−−
r := k ? xc

r−−−−−−−→
check [r]

?
= tl1 ⊕ zc

Figure 2.7: Generic protocol for proof of knowledge

Theorem 2.2.3. If values ` ∈ Z and u ∈ G are known such that

(1) gcd(c1 − c2, `) = 1 for all c1, c2 ∈ C, and
(2) [u] = z`,

then the three-move protocol round described in Figure 2.7 is 2-extractable.
Moreover, a protocol consisting of s rounds is a proof of knowledge if 1/|C|s is
negligible, and it is zero-knowledge if |C| is polynomially bounded.

Proof. 2-extractability can be proved as follows: From r and r′ such that [r] = t⊕ zc
and [r′] = t ⊕ zc′ for two different challenges c and c′ we can obtain x̃ satisfying
[x̃] = z, as

x̃ = ua ? (r
′−1 ? r)b,

where a and b are computed using Euclid’s extended gcd-algorithm such that

`a+ (c− c′)b = 1.

We make use of

[r
′−1

? r] = [r
′−1

]⊕ [r] = z−c
′ ⊕ t−1 ⊕ t⊕ zc = z−c

′ ⊕ zc = zc−c
′
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to see that [x̃] = z:
x̃t = [ua ? (r′−1 ? r)b

= [u]a ⊕ [r′−1 ? r]b

= (z`)a ⊕ (zc−c
′
)b

= z`a+(c−c′)b

= z.

(2.2)

Theorem 2.2.1 directly implies that the protocol is a proof of knowledge, and
Theorem 2.2.2 implies that is zero-knowledge if |C| is polynomially bounded since it
is c-simulatable. This is easy to see: Given z and a challenge c, one chooses r at
random and computes t as t = [r]⊕ z−c

The resulting Theorem 2.2.3 can be used to proof the zero-knowledge and proof
of knowledge properties of any protocol. In order to do this, we only need to
specify the groups G and H, the homomorphism f , and check the two conditions of
Theorem 2.2.3.

Fiat-Shamir heuristic:

In order to use an interactive protocol in practice, the prover and verifier are required
to be online at the same time. This brings a range of additional challenges such
as network latency and overhead. Instead, an interactive protocol can be made
non-interactive using the Fiat-Shamir heuristic [44]. This way, the proof can be
generated offline, the proof can be stored and reviewed later by one or multiple
verifiers. For instance, this mechanism is used in ZeroCash [16] to store range proofs
on a blockchain. ZeroCash is a decentralized digital currency that supports privacy-
preserving transactions, which means the currency has the fungibility property. A
prerequisite for the Fiat-Shamir heuristic is that the interactive proof is public coin.

Definition 2.8. An interactive protocol (P, V ) is called public coin if all messages
sent from the verifier to the prover are chosen uniformly at random and independently
of the prover’s messages, i.e., the challenges correspond to the verifier’s randomness
ρ.

We can make any public-coin interactive protocol non-interactive in the following
way. As an example, we will use the previously seen generic interactive protocol
that consists of three communication steps between the prover and verifier. In the
second step, the protocol relies on a randomly selected challenge c from the challenge
space C by the verifier. It is easy to see that the protocol is public coin, because the
only message sent by the verifier is at the second step, and c is randomly selected
independent of t from the first step. In the Fiat-Shamir heuristic, instead of relying
on the verifier for this challenge c, a cryptographic hash function is used as a source
of randomness for the challenge. The variable t from the first step is used as an
input in the hash function.
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The Fiat-Shamir heuristic relies on an additional security assumption in order
to prove soundness, namely that the output of a cryptographic hash function is
sufficiently random given an input. If it were possible for the prover to find a t
such that the hash function would output a specific c, the whole scheme would be
insecure.

Interestingly, transforming a zero-knowledge interactive proof of knowledge using
the Fiat-Shamir heuristic into a non-interactive proof of knowledge removes the
zero-knowledge property. This is because the transcript T can now be used by V to
convince another party V ′ because the transcript could not have been generated by
V .

2.2.6 Zero-Knowledge Range Proofs

In the previous section, we saw how zero-knowledge proofs can be applied to proof
that one has knowledge of a value x. Zero-knowledge proofs can also be used to
proof that a statement is true, without revealing any other information. One such
statement that is of particular interest to us is that a value lies within a specific
range, which we discuss in Section 5.4. In our robust federated learning protocol,
range proofs are used to prove additional properties about a client’s update, without
compromising update privacy. We now formalize the predicate Q that is satisfied in
the case of a range proof for a Pedersen commitment.
Given a group G with generators g and h, let z be a Pedersen commitment

z = gxhr, the property that x lies in a particular range [A,B] is captured by the
predicate:

Q((x, r), (z, g, h)) = (z
?
= gxhr ∧ x ∈ [A,B])

Much research has been done on range proofs due to their increased applica-
bility in cryptocurrency and privacy-preserving protocols. Specific protocols and
instantiations of range proofs are discussed in Section 3.4
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In this chapter, we review research related to scalable and secure federated learn-
ing and related work that is relevant to the cryptographic and machine learning
techniques we apply in this work. The chapter is structured as follows: We start
the chapter by discussing research that focuses on attacks and defenses in federated
learning. Next, we review various protocols for secure aggregation. After, we examine
techniques to improve the scalability of federated learning. We wrap up the chapter
by discussing several implementations of zero-knowledge range proofs.

3.1 Federated Learning

Federated learning can be deployed in the context of machine learning with billions
of user devices. In this setting, federated learning provides an improvement over
centralized machine learning in terms of bandwidth and data privacy, because training
is done at the clients. However, federated learning is inherently more susceptible to
integrity attacks than traditional machine learning due to the large-scale distributed
organization of the system with many untrusted clients. Some research efforts are
focused on studying and analyzing attacks, while others are focused on finding
suitable defenses. We cover the previous work in this order.

3.1.1 Attacks

Attacks on federated learning can be categorized as integrity and privacy attacks.
We cover both attacks, with more focus on integrity attacks as they are the focus of
this thesis.
Research on integrity attacks in federated learning started with Bagdasaryan

et al. [12] introducing the model replacement attack and showing that federated
learning is generically vulnerable to such attacks. Furthermore, they showed that
various existing Byzantine-resilient aggregation methods such as Krum [21] can
be evaded. Bhagoji et al. [19] proposed a technique for attacking the integrity of
a model by specifically targeting situations before the model has fully converged.
However, for this they require continuous poisoning over multiple rounds. Sun et
al. [102] analyze model poisoning attacks on the Federated-MNIST (FEMNIST)
dataset. The FEMNIST dataset was first introduced in the LEAF benchmarking
framework for federated learning [27]. They additionally suggest norm bounding and
weak differential privacy as effective empirical defense mechanisms against model
poisoning attacks. However, some configuration parameters used in this work remain
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unclear, and it is unclear how the insights drawn from experiments on the FEMNIST
dataset can be generalized to other setups. Hence, these unknowns motivated us to
further investigate model poisoning attacks. Finally, Tomsett et al. [104] explore
similar model poisoning attacks in peer-to-peer distributed learning networks.
The second type of attacks is information inference attacks, aiming to extract

sensitive information about training data through the shared global model. There
exist many inference attacks where only black-box access to a model is required [59,
78, 100, 105]. However, in federated learning, much stronger attacks exist due to
the inherent white-box access to the model [82,85]. For instance, Melis et al. [82]
demonstrate attacks to exploit feature leakage in models. Fredrikson et al. [47]
introduce the model inversion attack to construct the average input image for a
given class. Information inference attacks are a line of work orthogonal to ours.
Defenses against these attacks can be applied complementary to our work on robust
privacy-preserving federated learning.

3.1.2 Integrity and Defenses

We can group related work on defenses against model poisoning attacks roughly
into two categories, based on the assumptions made in the threat model. The first
category of work focuses on model integrity with Byzantine clients. The second
category focuses specifically on defending against model poisoning attacks.

Byzantine defenses: Model integrity has been well studied in distributed learning
where the concept of Byzantine robustness is used to reason about protocols that
operate with potentially faulty worker nodes. A Byzantine client is a worker node
that does not conform to the protocol by sending faulty or no messages. A Byzantine-
resilient protocol works with the assumption that a fraction of clients is Byzantine.
Ideas from these defenses, while more focused on datacenter-like distributed learning
setups, may be useful to model poisoning attacks in federated learning.

Several Byzantine-resilient aggregation protocols have been proposed for the feder-
ated learning setting. Some algorithms, such as Krum and Robust Secure Aggregation
rely on robust aggregation statistics like trimmed-mean and the median [21, 89, 108].
These algorithms ensure convergence under the presence of some Byzantine clients.
However, as El Mhamdi et al. [40] show, ensuring convergence alone is sufficient for
integrity, these solutions do not protect against other poisoning attacks by byzantine
clients. Therefore, this is referred to as weak byzantine-resiliency, where the algo-
rithms allow for a margin of poisoning. Other Byzantine-resilient algorithms provide
strong resilience at an additional cost in terms of resources [35]. Bulyan [40] iterates
over some weak Gradient Aggregation Rule (GAR) like Krum to provide strong
Byzantine-resiliency. Draco [31] computes multiple gradients per client instead of
one in an attempt to filter Byzantine clients, which poses significant computational
and bandwidth overhead.
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Model poisoning defenses: A second, more recent line of defenses attempt to
prevent model poisoning attacks. These defenses operate in a setting that is more
similar to federated learning where clients are untrusted. This is an arguably stronger
threat model than the byzantine setup, because data and update statistics can not
be shared freely due to privacy and bandwidth constraints. It has been shown that
Krum is not resistant to Sybil and model poisoning attacks in federated learning [48].
As a solution to model poisoning, Fung et al. [48] propose a defense for sybil-based
model poisoning using the insight that adversarial model updates are generally more
similar than benign updates for non-I.I.D. training data. However, it has also been
shown that this defense can be circumvented [13]: Adversaries can decompose their
malicious update vector into several orthogonal components that aggregate to the
originally intended update. In contrast, the Auror defense relies on the statistical
similarity of benign updates [99]. However, the defense has been shown ineffective
when the client’s dataset is non-IID.

Moreover, all previously discussed defenses, in addition to being ineffective against
model poisoning attacks while requiring significant resource overhead, are not possible
under secure aggregation. This is because they rely on access to individual client
updates, which are protected under secure aggregation.

3.2 Secure Federated Learning

Secure federated learning is a setting where secure aggregation is employed to protect
the individual client updates from the server, only revealing the aggregate update.
The most widely used protocol is by Bonawitz et al. [23], which was already reviewed
in Section 2.2.4. However, this protocol does not provide any protection against
actively malicious clients that provide malicious updates in an attempt to attack
the integrity of the model. To make matters worse, secure aggregation facilitates
this attack, because the individual updates are hidden from the server, removing
any accountability of the clients to their update. Other protocols exist that attempt
to provide robustness against malicious client updates, which we refer to as robust
secure aggregation protocols.

Robust secure aggregation

A protocol with additional robustness guarantees is Robust Secure Aggregation by
Pillutla et al. [89]. This protocol attempts to aggregate updates based on their
geometric median, which is more robust against outliers. They claim that the scheme
can be used in complement to any secure aggregation protocol by treating secure
aggregation as a black-box component of the protocol. However, the protocol still
relies on clients’ faithful input in the step where the robust median is computed.
Therefore, this step is robust against Byzantine clients but not actively malicious
clients. Thus, the protocol is ineffective under a threat model where clients can
behave actively adversarial.
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The second line of work in robust secure aggregation protocols attempts to solve the
problem of robust secure aggregation using multiple non-colluding servers. In large-
scale robust secure aggregation, there exists an apparent tension between privacy,
robustness, and performance. Corrigan-Gibbs et al. [34] attempt to overcome this
tension with Prio, in which a number of non-colluding servers securely compute
aggregate statistics. Using secret-shared non-interactive proofs (SNIPs), arbitrary
computations can be proved to attest the well-formedness of the input values. Clients
share the values to be aggregated along with any SNIPs to the servers. The servers
then independently verify the share of the values and the SNIPs by communicating
among each other, while preserving privacy. Prio is fast because it relies only on
symmetric cryptographic operations. However, this speed comes at a price: the
aggregation must be done using at least two servers with the assumption that at
least one server does not collude with the other servers. This is a weaker security
model, but may be sufficient in practice where two different organizations manage
a Prio aggregation server. This method is being used in practice by Mozilla to
collect browsing statistics in the Firefox web browser [42, 58]. However, in this case,
there still exists the question of where an organization like Firefox would deploy its
secondary aggregation server.

3.3 Performance Optimization of Federated
Learning

The decentralized nature of federated learning makes bandwidth a crucial perfor-
mance bottleneck. To address this issue, several techniques have been proposed to
reduce the bandwidth cost of federated learning. However, including robustness
against malicious clients incurs a significant additional computation and communi-
cation cost, which comes with its own set of scalability issues that were previously
unaddressed in federated learning. In this section, we review improvements for
both problems: Improvements that have been proposed in the context of federated
learning without robustness, as well as improvements outside of federated learning
that could prove to be useful in our federated learning with robustness setting.
This section is structured as follows: First, we discuss general compression tech-

niques to reduce bandwidth. Then, we look at improvements proposed specifically
in the context of federated learning.

3.3.1 Compression

While general compression techniques can significantly reduce bandwidth, they may
not always be applicable in combination with the privacy and security constraints of
our protocol. We now discuss a compression technique that is generally applicable
in signal processing applications, but also relevant in federated learning.
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Probabilistic quantization: Quantization is a lossy compression technique to
compress a larger, potentially continuous value into a smaller set of discrete quanta.
The amount of information required to express values in this smaller set of values is
less, providing a reduction in bandwidth. Furthermore, in probabilistic quantization,
the selection of the quanta is made probabilistically. In the federated learning
context, probabilistic quantization is used to compress the amount of information
per parameter in the client updates. Thus, by using probabilistic quantization, the
number of parameters stays the same.

To explain probabilistic quantization, we first describe how it works for compressing
an update to a single bit, so-called binary quantization. We then generalize this
method to arbitrary n-bit quantization schemes. Let hmin and hmax be the respective
minimum and maximum values of the vector that we want to encode. For each
element hj in the update vector, we have a compressed element h̃j:

h̃j =

{
hmax, with probability hj−hmin

hmax−hmin

hmin, with probability hmax−hj
hmax−hmin

(3.1)

The further away hj is from either hmin and hmax, the higher the probability that
h̃j is the other value. A visualisization is shown in Figure 3.1. Because for every
weight only two values are possible, we can encode them using a single bit, i.e., 0 or
1.

hmin hj hmax

probability of hmax probability of hmin

Figure 3.1: A visualization of the probability of probabilistic binarization

Because the values are chosen probabilistically, values of 0 and 1 are selected with
a similar frequency that when averaged should lead to a good estimate of the true
average hj . We can proof this by showing that h̃j is an unbiased estimator for hj by
using the definitions of h̃j and the expected value:
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E[h̃j] = hmax · P[h̃ = hmax] + hmin × P[h̃ = hmin]

=
hmax × (hj − hmin) + hmin × (hmax − hj)

hmax − hmin

=
hmax × hj − hmax × hmin + hmin × hmax − hmin × hj

hmax − hmin

=
hmax × hj − hmin × hj

hmax − hmin

=
hj × (hmax − hmin)

hmax − hmin

= hj

If the updates of many clients share the same weight distribution, h̃j is likely close
to the true hj. The averaging over many clients cancels out the variance that the
binary approximation may cause. In most common machine learning architectures,
parameters are usually stored in 32- or 64-bit floating point representations, resulting
in a speedup of a factor 32 or 64, respectively.
However, reducing the parameter update to a single bit may lead to a large

accuracy loss because of a large approximation error. This can be attributed to the
number of clients being too small, the weight distributions of the clients not being
similar, or the interval [hmin, hmax] being too large. Fortunately, this scheme can
be generalized to reduce parameters to an arbitrary number of bits. This way, the
error can be reduced at the cost of extra bits. Instead of binarization, the process is
then called quantization. With k bits, we can encode 2k values, which are chosen by
evenly segmenting [hmin, hmax].
To compress a parameter hj using probabilistic quantization, the process is as

follows. First, hj,min and hj,max are determined by finding the lower and upper
bound in the segment that hj lies in. Then, h̃j is determined using Equation 3.1,
similar to binarization. Using probabilistic quantization, we can make a tradeoff
between accuracy and bandwidth. It has been empirically shown that probabilistic
quantization for client uploads is very efficient and barely reduces accuracy on the
CIFAR-10 dataset [68]. However, when probabilistic quantization is applied to the
client downloads, i.e. the global model update sent to the clients, accuracy is severely
impacted [69]. This result is in line with our theoretical expectation, as h̃j is only a
good estimator of hj if we have multiple samples to average over.

3.3.2 Federated Learning Improvements

We now discuss optimizations that have been proposed specifically in the context of
federated learning. Most improvements focus on reducing the number of parameters,
which is a bottleneck in training time and bandwidth. Moreover, these optimizations
may also prove useful in improving the scalability of additional robustness guaran-
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tees. At the same time, the optimizations must be compatible with the robustness
guarantees.
Improvements to reduce bandwidth in the context of federated learning focus

on reducing the up- and down-link communication cost by compressing the model
updates [68, 69]. Konečný et al. [68] categorize these compression techniques into
two classes: Structured updates and sketched updates. We organize our discussion
of these improvements in a similar fashion.

Sketched updates

Sketched updates are a form of compression where model updates are compressed
in a separate step after local training. A client i first creates an update wi using a
learning algorithm without additional compression constraints and then compresses
the update using lossy compression techniques.

Random mask: In this setting, a random subset of entries of wi, w̃i is transmitted
to the server1. The server then aggregates the updates w̃ =

∑
i w̃i. A random mask

M is generated using a random seed that is generated individually for each client
per round. Entries in the random mask are chosen following a Bernoulli distribution
with parameter p as the fraction of entries in the random mask that are kept:

Mi ∼ Bernoulli(p)

The random mask is then created from the client’s weight update as:

w̃ = (w ⊗M)
1

p

where ⊗ denotes the Tensor product, i.e. the element-wise multiplication of two
matrices. We can now see that the expectation of the aggregated update E[w̃] = w̃
is an unbiased estimator for w,

E[w̃] = E[(w ⊗M)
1

p
]

= E[w ⊗M ]
1

p

= (w ⊗ E[M ])
1

p

= (w ∗ p⊗ 1)
1

p

= w ⊗ 1

= w

using the linearity of expectation. This compression method works well due to the
large amount of clients participating in the network. However, there is a security

1This is also referred to as Subsampling [68].
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problem with the Random Mask technique, that was not discussed in the original
work. Here, as fewer clients contribute to the same parameters, Random Mask
can reduce the privacy gained by secure aggregation. For example, the server
can generate the random mask in a malicious way such that the sparsity patterns
single out a specific client for a subset of the model parameters. In this scenario,
the masks are set up so that one client provides the only contribution to some
parameters, rendering secure aggregation useless for this subset of model parameters.
Furthermore, the client has no way to know if it is the only one participating to
this subset of parameters. Alternatively, if the random masks are determined by the
clients, a subset of malicious clients may choose to collude and contribute specifically
to some parameters of the model. Because only a subset of honest clients will choose
to update those parameters, it becomes easier for a subset of adversaries to poison
the model. This security issue can be overcome but requires additional steps in the
protocol to ensure the sparsity pattern is generated in a verifiable random way.

Structured updates

In contrast to the sketched updates discussed in the previous section, structured
updates adapt the optimization algorithm to learn a compressed version of an update
directly. For structured updates, the optimization objective is altered to take the
compression objective into account.

Random mask: Every client’s update wi is restricted to be a sparse matrix using
some random sparsity pattern that is generated using a seed. The client thus only
has to send the non-zero entries of wi to the server. This is implemented in a
learning algorithm such as SGD by treating the weights that are in the mask as
constants, and only computing the gradients for the weights that the client can
submit. An advantage of this method over a sketched random mask is that the
updates of individual clients can be more meaningful to the global model because
no information is lost by zeroing out gradients. Empirically, this method shows
promising results in terms of the tradeoff between communication cost and accuracy
loss. However, in contrast to a sketched random mask, we do not have any theoretical
guarantee that the compressed update is a good estimator for the true update.

Matrix decomposition: A client’s update to the local model w ∈ Rd1×d2 is de-
composed as w = AB with A ∈ Rd1×k and B ∈ Rk×d2 . A is generated fresh per
round and per client and is kept constant during training. The client has to find a
B such that AB is the best k-rank2 approximation of w. Note that this does not
force the global model wG to be of rank k, because different clients create different
linearly dependent rows in their individual updates, which are then combined into
the global model.

2In [68], this is referred to as Low Rank.
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The clients construct the matrices A and B as part of the optimization process.
Instead of first learning w and then decomposing it into A and B, B is learned directly
by incorporating A and B directly into the computational graph and optimizing with
respect to B. A can be generated using a random seed, requiring the clients to only
send B to the server. This approach saves a factor d1/k in communication costs.

Federated dropout: A third technique that has been proposed in [27] is federated
dropout, which is inspired by dropout layers used in machine learning [101]. Dropout
is traditionally used as a regularization method to reduce models from overfitting
on training data. At each training pass, a fraction α of weights in the model are
randomly zeroed out. As a result, different sub-models of the original model are
trained, causing the full model to generalize more, often resulting in higher accuracy
on the validation dataset.

In federated learning, this dropout technique can be used to save bandwidth and
could improve accuracy as an added benefit. To apply federated dropout, the server
sends a different sub-model to each client. For every client, the server randomly
zeroes out a fraction α of the weights and sends them to the client without the zero
weights, by organizing the nodes such that no zeroed out weights are in the layers.
This way, the number of parameters used is reduced by a factor 1− α. Additionally,
the server can perform federated dropout without any changes to the federated
learning protocol on the client-side.

3.3.3 Intrinsic Dimension

To ensure robustness, we rely on per-parameter security proofs that are costly to
create and verify, where the number of parameters contributes largely to the amount
of computation required. Therefore, we explore methods that can reduce the number
of parameters in a model. We found that Random Subspace Learning, unrelated to
federated learning, proposed in the machine learning field, is particularly suitable an
optimization for federated learning.

Random subspace learning was introduced by Li et al. [75], not as a compression
method, but as a way to look at the intrinsic hardness of a machine learning task.
In their work, Li et al. [75] investigate the intrinsic dimension of a machine learning
model. We are the first to propose the application of this work in a federated learning
setup. In this section, we explain the idea behind random subspace machine learning
and show how it can be applied to federated learning.
Random subspace learning is used to find the intrinsic dimension of an opti-

mization problem. We introduce the notion of intrinsic dimensionality with a toy
example from the work. Let θD ∈ RD be a weight vector in a parameter space
of dimension D, and let θD0 be a randomly chosen initial parameter vector. Now
consider an optimization problem where D = 1000 and where θD is optimized using
the minimum squared error function. The error function is defined such that it
requires the first 100 elements of θD to sum to 1, the second 100 elements to sum to
2, and so forth until we have covered all the elements of θD in 10 groups. We can
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initialize θD0 according to any random distribution and optimize the weights of θD
until the loss is arbitrarily close to zero.
There are many solutions to this problem. In fact, the solution space lives in

a 990-dimensional hyperplane: from any point that has zero cost, there are 990
orthogonal directions one can move and remain at zero cost. We define s as the
dimension of the set of possible solutions and the intrinsic dimensionality dint as the
codimensionality of the solution set inside RD:

D = dint + s

In our example, the intrinsic dimensionality of our problem and solution vector
dint is 10 (1000 = 10 + 990), corresponding to the 10 constraints that we have on
our parameter vector. Even though the parameter space is large, the number of
constraints we need to satisfy is small. In other words, at any point where the loss
is zero, we have 990 directions to move in while keeping the loss zero.

The previous example gives us an intuition of intrinsic dimensionality in which we
could find the solution algebraïcally. However, we would like to find dint for more
complicated problems, for example for problems with a data-dependent loss function
such as neural networks. To this end, Li et al. define Random Subspace Training.

Random Subspace Training works as follows. In standard optimization, steps are
taken along the gradient with respect to θD directly in the space of θD. To train in
a random subspace, θD is defined as:

θD = θD0 + Pθd

where P is a randomly generated D × d projection matrix and d is a parameter
vector in Rd where generally d << D. θD0 and P are generated once kept fixed
during training.
θd is initialized to a vector of all zeroes, so initially θD = θD0 . Additionally, θD0

is initialized according to any distribution that is beneficial to the neural network.
During training, steps of gradient descent are taken in the space θd. The columns
of P are normalized to unit length so that the step size in θd matches the same
distance in θD. This ensures compatibility with existing initialization methods and
optimizer algorithms such as SGD and Adam [66]. Furthermore, if the columns of
P are orthogonal, P is an orthonormal matrix, resulting in the preservation of the
L2-norm of θd, which is useful for our robustness guarantees, which is explained
in Section 5.6.4. For this, the columns of P can be orthogonalized, but we assume
them to already be almost orthogonal due to the approximate orthogonality of high
dimensional random vectors.

Size of the projection matrix: An issue with the projection matrix P ∈ RD×d

is that it can become too large to store in memory for a reasonably sized model.
Additionally, performing a dense matrix multiplication between P and θd is of
complexity O(Dd), which means performing the multiplication will grow linearly
in D and d and will thus take a significant amount computation time for large D
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and d. In order to reduce the memory and computational requirements for P, the
authors propose two methods.
The first technique is by constraining P to be sparse, which, when randomly

generated, are known to have approximately orthonormal columns [76]. With a
sparse matrix, we can perform sparse matrix multiplications, which are optimized
for sparse matrices and much faster than multiplication algorithms that assume
dense matrices. The sparse matrix is generated as follows: Each entry is chosen
to be non-zero with probability 1√

D
and, if non-zero, is either −1 or 1 with equal

probability. P then consists of d columns of on average
√
D values. The average

space complexity and average time complexity for matrix multiplication are then
O(
√
Dd).

The second technique is based on the Fastfood transform [72]. The approach is
based on the insight that the product of a Hadamard matrix and a Gaussian vector
behaves similar to a dense Gaussian matrix. In other words, in order to multiply
our vector θd with a square Gaussian matrix M , we can perform multiplication with
multiple smaller matrices by decomposing M as:

M = HGΠHB

where H is a Hadamard matrix, Π is a random permutation matrix, and G is a
random diagonal matrix with independent standard normal entries. Multiplication
with a Hadamard matrix can be done using the e Fast Walsh-Hadamard Transform
in O(d log d) time, and the other matrices can be multiplied in linear time and space.
One requirement is that the dimension of M is a power of two. If d is not a power
of two, we can zero-pad θd. If M > d, we can stack multiple independent samples of
M to increase the dimensionality of the output. With these methods, we achieve a
time complexity of O(D log d) and a space complexity of D. The complexity of this
technique allows for the optimization of very large models. The authors show that
is feasible to optimize very large models such as the Pong Reinforcement Learning
task which has 1M parameters.

The authors define dint100 as the intrinsic dimension required of a task to achieve
100% of the baseline accuracy. However, when the baseline accuracy is only achievable
when the task requires very well-tuned models. Moreover, the dint100 performance
would vary widely between runs, as the regularization effect of subspace training
would randomly give tiny boosts in accuracy. Therefore, the dint90 is used to measure
the intrinsic dimensionality of the tasks, as it provides a good tradeoff between
measurement stability and still good accuracy on a task. Results show that some
problems require a higher intrinsic dimension than other problems. Note that a task
is formulated as an optimization problem together with a model architecture. For
example, the intrinsic dimension of MNIST with a fully-connected layer architecture
is 750, whereas when using convolutional layers, the intrinsic dimension is only 290.
This technique, while not intended for compression, may be useful in federated

learning. There is a large potential for improvements over normal federated learning
because only the parameters of θd have to be transmitted and aggregated each round.
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For the initialization of P, we only have to communicate the random seed that is
used to generate P instead of sending the whole matrix.

3.4 Zero-Knowledge Range Proofs

Zero-Knowledge Proofs are a class of cryptographic proofs that we use in this
work to ensure the robustness of federated learning aggregation while preserving
privacy. In recent years, many new constructions and optimization techniques
have been proposed to increase the efficiency of Zero-Knowledge Proofs. This is
largely driven by the increased interest and relevance of Zero-Knowledge proofs
in many important applications, such as cryptocurrencies [16], electronic voting
(e-voting) [18, 22, 53, 55, 63], and smart metering [94]. In this section, we discuss
some techniques to construct zero-knowledge proofs and specifically focus on the
applications of these proofs as zero-knowledge range proofs.

Zk-SNARK: Range proofs are used in cryptocurrencies such as Zerocash [16,17] to
prove the validity of transactions without revealing any of the transaction details, such
as the amount. To this end, Zero-Knowledge Succinct Non-Interactive Arguments
of Knowledge (zk-SNARKs) are used. Zk-SNARKs can prove the correctness
of arbitrary circuits translated to Quadratic Arithmetic Programs (QAPs). The
Succinctness of the proofs signifies that the proof transcript is small relative to
the circuit being proved and that it can be verified in a short time. This makes
zk-SNARKs particularly suitable in blockchain systems because they require little
storage space and they are easily verifiable by a node in the network. For instance,
a zk-SNARK proof for a Zerocash transaction is only 288 bytes and can be verified
in 6 milliseconds [84,96]. However, proof generation is slow and requires significant
memory. Additionally, zk-SNARKs require a trusted party to generate some variables
that are relied upon to guarantee security in the protocol and which has to be trusted
to discard the knowledge of the relation between the variables. If the party does not
do this, they are able to forge proofs, which means security is compromised.

In an attempt to solve this, Zero-Knowledge Scalable Transparent Arguments of
Knowledge (zk-STARKs) were proposed [15]. Zk-STARKs have no requirement for
a trusted setup, but the proofs are significantly larger, from 45 to 200 Kilobytes per
Zerocash transaction [84].

Bulletproofs: Bulletproofs are a type of zero-knowledge proofs proposed by Bünz
et al. [26]. Similar to zk-STARKs, they do not require a trusted setup, while the
proof sizes are generally much smaller than for zk-STARKs. Bulletproofs have native
support for Pedersen commitments, which lets us use range proofs without requiring
the overhead of implementing elliptic curve arithmetic in zero-knowledge circuits.
Bulletproofs use a recursive inner-product argument to proof a value lies within
a given range [0, 2n]. With these optimizations, a single range proof requires only
2 log(n) + 4 group elements and 5 elements in Zp. Furthermore, Bulletproofs support
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efficient proof aggregation, adding only a 2 logm factor where m is the number of
independent range proofs.

Arbitrary ranges: Range proof techniques such as Bulletproofs allow a party to
prove a value lies within a given range [0, un). However, in some cases, we would
like to be able to prove for a more granular range than a power of u, or for negative
values. Camenisch et al. [29] provide a reduction to create a range proof for an
arbitrary interval [a, b] using only two range proofs. Given a value σ and suppose
that un−1 < b < un, to show that σ ∈ [a, b], it suffices to show that:

σ ∈ [a, a+ un] ∧ σ ∈ [b− un, b]

The formal proof of this reduction can be found in [29].
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4 Analysis of Federated Learning
Robustness

Ahead of deploying federated learning in high-stakes, privacy-sensitive applications,
we need to understand its robustness in the presence of adversaries. The goal
of this chapter is to quantify and empirically analyze the robustness of federated
learning against malicious clients. In traditional machine learning, an adversary
may attempt to compromise the integrity and privacy of the model but is always
limited by black-box access to the model. Conversely, federated learning, besides
being susceptible to known security and privacy vulnerabilities of a typical machine
learning setting, is exposed to a new surface of attacks, due to its open nature, i.e.,
white-box access by a multitude of agents, which we need to examine carefully. This
has significant implications for the privacy of the clients and the integrity of the final
model. While some work examined attacks on federated learning [12,19,82,102,104]
which we review in Chapter 3, the interaction between attacks and defenses on
federated learning systems in various setups has not been studied extensively.

In this chapter, we study vulnerabilities and attacks on machine learning algorithms
that are particularly challenging in federated learning. The chapter is structured
as follows: First, we define the exact goals we want to achieve with this analysis.
We then describe the framework that we developed and used in the empirical
analysis. Next, we establish the setup and methodology for the analysis. Afterwards,
we formalize and inspect attacks on federated learning. Finally, we look at the
effectiveness of various defenses against these attacks.

4.1 Study Objectives

The main question we aim to answer in this analysis is: What is (1) the effect of
integrity attacks on model robustness and (2) how can we mitigate the
impact of such attacks?
Addressing (1) entails answering several questions on integrity attacks:

1. What integrity attacks exist and how are they performed? (Section 4.4)

2. What is the impact of these integrity attacks on model robustness? (Section 4.5)

We address (2) by inspecting the following:

1. What defenses against integrity attacks exist and how well do they preserve
model integrity? (Section 4.6)
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2. What defenses can sufficiently mitigates integrity attacks? (Section 4.6.1)

This study aims to understand attacks and defenses in a wide set of settings,
considering various model architectures, model sizes, and task types. The answers
allow us to better understand the effect of client adversaries which could aid us in
designing more robust federated learning protocols.

4.2 Analysis Framework

For the purpose of this and future studies, we developed a framework to analyze adver-
sarial attacks in federated learning. The framework has matured to a comprehensive
federated learning tool with support for a wide range of IID and non-IID datasets,
models, and configuration options. A differentiating factor of this framework over
other federated learning frameworks is its capability of simulating adversarial attacks
and defenses, combined with various efficiency improvements for protocol scalability.

Configuration. The framework allows users to define setups in configuration files
with support for more than 80 different configuration options. Examples of options
are the number of clients, the number selected clients per round, the parameters
used in machine learning training, weight regularization and data augmentation.
Furthermore, the framework supports the specification of multiple runs under different
hyperparameters to efficiently find suitable values.

Adversaries. The framework supports the modeling of a broad set of adversaries
with different goals. Many attack strategies for adversarial federated learning are
supported such as scaling attacks, contamination attacks and attacking under a
norm bound using projected gradient descent. Conversely, the framework includes
various defense mechanisms to protect against the attacks.

Improvements. In addition to adversarial federated learning setups, the frame-
work supports many techniques to improve the scalability of federated learning.
Examples of such techniques include probabilistic quantization, federated dropout,
and random subspace machine learning. These can be used to quantify the effect of
the improvements on model accuracy, adversarial success and bandwidth.

Scalability. The framework is optimized to be highly scalable and fast. Setups with
thousands of clients are supported, while only taking up the memory of a single model.
Moreover, the framework can be configured to use multiple worker nodes in parallel
to speed up training at the cost of having more models in memory. In addition
to scalability for large setups, model training is also fast. While the framework is
highly customizable and contains many different training methods to craft attacks,
the main training and evaluation loops are optimized to use Tensorflow’s fast graph-
based execution system. Furthermore, input data is fed and augmented through
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Tensorflow’s Dataset API, allowing for GPU training that is unconstrained by the
I/O pipeline. For instance, one epoch of CIFAR-10 on LeNet5 takes 3 seconds on an
Nvidia Tesla K80 GPU.

Analysis. Finally, the framework has the capability to calculate elaborate statistics
of benign and malicious client updates. For post-training analysis, simple inspection
tools such as Tensorboard [5] are supported. At the same time, experimental data
can be exported to machine-interpretable data formats such as csv to be analyzed
by other data analysis tools.

Implementation. The framework is built in Python 3.x using Tensorflow 2.x [7]
with machine learning operations defined in the Keras interface. Furthermore, some
custom Keras layers are implemented using Tensorflow 2.x operations, to experiment
with custom training techniques such as random subspace learning. Data is processed
and analyzed using the NumPy library.

4.3 Experimental Setup

To perform the experiments, we use the previously introduced Federated Learning
Analysis Framework as the federated learning setup. In the experiments, there exist
three types of actors. A server, multiple clients, and attackers. The system executes
a federated learning protocol to train a global model on a global objective. The
goal of the server and the benign clients is to create a global model with the highest
accuracy at the end of training. The server uses the FedAvg aggregation algorithm.

Every client communicates directly with the server and not with any other client,
unless they are compromised by the adversary. Each client possesses a local dataset
that they use for local training. Depending on the setup, the datasets are either IID
or non-IID.
We assume that the adversary can compromise an up to a fraction α clients

which can then freely communicate to craft malicious updates. In our experiments,
we assume a single attacker for simplicity. Therefore, the number of clients n is
always the inverse of α, i.e. n = 1

α
. This is justified, because the updates that

clients send are averaged. For instance for α = 0.1, the contribution to the model
of two adversarial clients in a setup with with 20 clients would be the same as the
contribution of one adversarial client in a setup with 10 clients. Additionally, the
defense method that we employ does not rely on the analysis of properties such as
cosine similarity, but on update size, which is relative to the number of other clients.

4.3.1 Methodology

We use the following datasets throughout this chapter, along with the configurations
shown in Table 4.1.
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Federated-MNIST: This dataset consists of the same hand-written digits as in the
MNIST [73] dataset, but the samples are grouped by the creator of the digits
to model a natural non-IID distribution. In total the dataset contains digits
3383 users of roughly 100 digits each [28].

Fashion-MNIST: This dataset is a drop-in replacement for the MNIST dataset but
with 28× 28 images of fashion items [107].

CIFAR-10: This is an image dataset consisting of 32× 32 images of 10 categories.
CIFAR-10 poses a significantly harder classification task than the MNIST-like
tasks [70, 75]. The samples are non-IID distributed based on the label using a
Dirichlet distribution with α = 0.9.

Name Description Comments
C1-FEMNIST Federated-MNIST, 30 se-

lected out of 3383 clients
Similar setup as used by Sun
et al. [102]

C2-CIFAR10 CIFAR-10, 50 selected out
of 100 clients

C3-FASHION Fashion MNIST, 10 selected
out of 100 clients

Table 4.1: Overview of the setups used in this analysis.

Experiment data was inspected using Tensorboard [5] and graphs were created
using Matplotlib [62]. Experiments were done using the Leonhard [3]; a computation
cluster provided by ETH Zurich.

4.4 Attack Strategy

Federated learning introduces many new client-side attack vectors due to its white-
box model access by the clients. Attacks on federated learning can compromise
privacy, integrity, or both. An overview of existing attacks on federated learning
can be found in Table 4.2. In this study we focus our analysis on attacks targeting
integrity.
In a centralized machine learning setup, an adversary can attempt to influence

the integrity of the model by submitting malicious training samples. This is referred
to in the literature as a data poisoning attack. For this attack to be successful,
the adversary must be able to submit a number amount of malicious samples to
influence the training algorithm to successfully inject the malicious behavior into
the model. In federated learning, clients directly submit their updates to the shared
model which are computed based on local training data. This allows adversaries to
submit a corrupted model and is therefore called model poisoning. Model poisoning
is a much stronger attack than data poisoning because the adversary has control
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Attack Description Compromises
Sample reconstruction Reconstruct samples that

were used as training data
by other clients

Privacy

Membership inference Determine if a specific sam-
ple was used during training

Privacy

Class representative inference Recreate samples that are
typical for the training
dataset

Privacy

Model poisoning Corrupt the model to per-
form a specific unwanted be-
havior

Integrity

Table 4.2: Overview of client-side attacks on federated learning.

over the full training process such as the training parameters, training data, and
even the training algorithm. Data poisoning can be seen as an instance of model
poisoning, where the adversary is limited to using the same training parameters as
all other clients.

The rest of this section is structured in two parts. First, we establish a taxonomy
of the strategy that is used to perform model poisoning attacks and categorize
existing attacks in this framework. Then, we empirically analyze the impact of
model poisoning on model robustness, considering different attacker objectives,
attacker capabilities, number of clients, and datasets.

4.4.1 Model Poisoning

Existing model poisoning attacks all follow a similar method. The main idea of the
attack is to send a malicious update to nudge the global model towards the direction
of an area of the parameter space where a certain malicious objective is satisfied.
The update must be large to overpower the contributions of the other clients in
aggregation. An illustration is shown in Figure 4.1. We organize this section into
two parts. First, we provide a taxonomy of the malicious objective. Second, we lay
out an abstraction of the commonly used strategy to execute the model poisoning
attack for a given malicious objective.

Malicious objective. A model poisoning attack aims to inject malicious behavior
into the shared model. The attacker defines this behavior in a malicious objective.
However, this malicious objective encapsulates a diverse set of potential malicious
goals. For example, in an image classification task, malicious objectives can range
from classify all blue planes as birds, to misclassify all dogs as any other class, or
just reduce the overall model accuracy. Malicious objectives vary in specificity and
impact, and all have different feasibility rates and attacker requirements. To better
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4 Analysis of Federated Learning Robustness

Figure 4.1: Schematic illustration of model poisoning attack. The attacker attempts
to modify the model so that it performs a malicious objective while still
performing well on the main task.

understand the topic, we provide a categorization of the properties of the malicious
objective.
In supervised learning, the malicious objective consists of tuples of a malicious

sample and label D̂ = {(x̂i, ŷi)}n̂i=1. To optimize the model for the malicious objective,
the attacker provides a loss function for the malicious samples:

Lmal(x̂, ŷ,w) =
1

n̂

n̂∑
i

`xent(fw(x̂i), ŷi)

With a malicious objective, the attacker crafts a malicious update according
to a specific strategy. Existing strategies can be generalized as consisting of two
steps and an optional third step: Malicious Training, Malicious Scaling, and Global
Model Estimation. Before discussing the practical steps, used, we provide a formal
definition of the model poisoning attack.
The goal in round t of the attacker, denoted by m, is to make the model in the

next round perform well on a malicious objective:

minimizeLmal(x̂, ŷ,w
t+1)

However, this optimization is infeasible for the attacker, due to the fact that he does
not know the exact weights in round t+ 1. This is because his contribution will be
averaged with that of clients that still have to submit their weight updates:

wt+1 = wt + θ
∑
i∈[k]

wt+1
i

= wt + θ

 ∑
i∈[k]\m

wt+1
i

+ θwt+1
m
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4 Analysis of Federated Learning Robustness

Thus, the attacker has to relax this optimization objective into using an objective
that uses the weights in round t or an estimation of the weights in round t+ 1:

minimizeLmal(x̂, ŷ,w
t)

Malicious Training

First, the attacker trains the model on the malicious objective Lmal using a method
such as stochastic gradient descent. As the attacker has white-box access to the
model, the training parameters such as batch size, number of epochs, and learning
rate can be completely customized and do not have to be the same as dictated by
the server. For instance, it has been shown that quickly decreasing the learning
rate can improve the durability of a model poisoning attack throughout multiple
rounds [12]. Given the training setup, two kinds of training strategies have been
used:

Model replacement. The attacker attempts to fully replace the global model
by training on malicious and benign samples at the same time. The attacker
draws b− b̂ benign samples and b̂ malicious samples and puts them in a single
batch. The attacker typically performs the optimization for a fixed number of
iterations. This method does not guarantee great accuracy on the malicious
objective, for instance if the number of iterations is too low and the malicious
objective is hard to learn. However, it should allow the model to learn the
exact features that differentiate malicious samples from benign samples.

Segment poisoning. Instead of having the ambitious goal of replacing the
model with an adversarial model, the attacker attempts to poison a part of the
model. To do so, the attacker trains its local model on malicious samples, until
the loss of the malicious objective is below a target loss Ltarg. This method
guarantees high accuracy on the malicious objective, but may cause the model
to have bad performance on the main task.

In addition to the malicious objective, the attacker may use techniques for the
update to be close to benign updates to circumvent anomaly detection. The attacker
does so by including a second term Lano in the loss function L. It has been shown that
this approach is successful in circumventing all existing defenses against client-side
integrity attacks. The relative weight of both terms in the loss function is regulated
by the parameter µ.

L(p, y,w) = µLmal(p, y) + (1− µ)Lano(w)

An example of a commonly used Lano is a weight regularization term to constrain
the size of the weights of the malicious update, by using the L2-norm:

Lano(w) = ‖w‖2
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Algorithm 5 Segment poisoning

1: input: Initial weights w0, malicious samples D̂, step size η, batch size b loss
function L, malicious loss target Ltarg

2: L̂ =∞
3: i = 0
4: while L̂ > Ltarg do
5: B̂ ∈R D̂b . Draw a batch of random malicious samples
6: P ←− fwi

(xB̂) . Calculate model’s predictions
7: L̂←− L(P, yB̂) . Compute loss
8: ∇L̂←− δL̂

δwi
. Compute gradient using backpropagation

9: wi+1 ←− wi + η∇L̂ . Update weights
10: i←− i+ 1
11: end while
12: output wi

Algorithm 6 Model replacement

1: input: Initial weights w0, benign samples D, malicious samples D̂, step size
η, loss function L, number of iterations I, batch size b, malicious samples per
batch b̂

2: for i = 1 to I do
3: Bben ∈R D(b−b̂) . Draw b− b̂ benign samples
4: B̂ ∈R D̂b̂ . Draw b̂ malicious samples
5: B ←− Bben ∪ B̂ . Create batch with both benign and malicious samples
6: P ←− fwi

(xB) . Calculate model’s predictions
7: L̂←− L(P, yB) . Compute loss
8: ∇L̂←− δL̂

δwi
. Compute gradient using backpropagation

9: wi+1 ←− wi + η∇L̂ . Update weights
10: end for
11: output wi

After getting a poisoned model wt
m through malicious training, the attacker creates

a malicious update by subtracting the global model wt−1
G from this model.

∆xtm = wt
m −wt−1

G

Malicious Scaling

After the attacker has created a malicious update that will poison the model, it has
to overcome an additional hurdle. Recall from the FedAvg algorithm, that the model
is averaged over n clients and applied to the global model with a global learning rate
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of θ. In order for the update to survive the averaging and overpower the learning
rate, it is scaled by a scaling factor γ. The scaling factor is set to:

γ =
n

θ

in order for the malicious update to completely survive averaging. However, we
show that, in practice, a lower scaling factor can also be sufficient to get moderate
adversarial success.

Global Model Estimation

Finally, as an optional last step to improve the success rate, an attacker may choose
to negate the updates submitted by the other clients. As the attacker does not have
direct access to the clients’ updates, it has to estimate what the other clients will
send. The attacker, denoted with m can do this by estimating the next average
update the other clients [k]\m will send ∆wt

[k]\m in a round t by comparing the
current global model with the last model it received at a previous round t′.

∆wt
[k]\m =

wt
G −wt′

G −∆wt′
m

t− t′

The attacker then subtracts this estimation from its scaled malicious update.

∆wt
m = γ∆xtm −∆wt

[k]\m

4.4.2 Classification

In this section, we analyze and categorize the attack strategies of model poisoning
that is covered in recent literature. The attacks are all instantiations of the attack
strategy laid out in the previous section. An overview and classification of the
existing model poisoning attacks are shown in Table 4.4.
The table illustrates the many dimensions of the problem space of the analysis.

The proposed attacks each have their own focus and characteristics, with different
datasets, malicious objectives, malicious training strategies, number of clients,
and number of selected clients. In addition to this, the various machine learning
hyperparameters such as learning rate and regularization also impact the results of
attacks and defenses. This makes the attacks hard to compare.
For some work, not all parameters are described in such a way that the work is

reproducible. Attacks W1 and W3 in Table 4.4 contain parameters that were not
described in the original paper but that are used in the experiments. In particular,
The segment poisoning strategy requires a specific target loss for the malicious
samples. Next, W3 does not come with any source code and lacks some descriptions
about the methods used for training, specifically for the projected gradient descent
method.
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4 Analysis of Federated Learning Robustness

4.5 Attack Impact

We now evaluate existing attacks and empirically analyze the impact of model
poisoning attacks. The attacks we demonstrate are based on existing attacks in the
literature and summarized in Table 4.5.

Attack Description Source
C1-FEMNIST
A1-HAND Classify images of 7 of a subset of handwriters as

1.
[102]

C2-CIFAR10
A2-WALL Classify images of cars with a specific pattern in

the background as birds.
[12]

A3-GREEN Classify images of green cars as birds. [12]
A4-STRIPES Classify images of cars with a racing stripe as birds. [12]

Table 4.5: Attacks used throughout this chapter.

The goal is to get an empirical intuition of the behavior of model poisoning attacks
under different strategies and in various settings. The rest of this section is organized
as follows. We first analyze the impact of model poisoning attacks under different
attack strategies and malicious objectives. We then look at the tradeoff between
detectability and attack success introduced by stealth methods. Afterwards, we
examine the influence on attack success of properties related to the federated learning
setup such as the number of clients.

4.5.1 Strategies

We first show the effectiveness of the unconstrained model poisoning attack under
different training methods and malicious objectives, to get an intuition on the severity
of the attacks.

Single-shot attack. To start, we show the attack in its simplest form. We let the
model converge and then have a single attacker perform an attack in one round,
using the model replacement malicious training method. As shown in Figure 4.2,
the effect is detrimental for model integrity. The model accuracy degrades slightly
while the backdoor is injected successfully and stays for many rounds. Additionally,
we see the effects of the different malicious objectives. The accuracy of the backdoor
is highly dependent on the characteristics of the malicious objective.

Malicious Training. In the previous single-shot attack, we showed the effects of
the model replacement training strategy. A comparison with the segment poisoning
strategy is shown in Figure 4.3. Both attacks are successful in injecting the backdoor
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Figure 4.2: Model Poisoning attack. Model: ResNet56. C2-CIFAR A2-WALL
A3-GREEN A4-STRIPES.

into the model, with an accuracy of around 0.9 for the malicious objective. After
poisoning, the backdoor stays in the model for many rounds. However, we see two
differences between the two strategies.
First, the model replacement attack keeps a higher accuracy in the model for

many more rounds than the segment poisoning attack, which quickly decreases to
0.35 after 75 rounds and then slowly decreases further. The observation that the
segment poisoning attack is removed from the model relatively quickly is in line
with results reported in [12], which conclude that segment poisoning requires the
attacker to participate in every round to maintain backdoor accuracy. Second, the
segment poisoning training strategy significantly reduces the global model accuracy,
compared to model replacement. We attribute both differences to the fact that
segment poisoning only focuses on training the subspace in which the malicious
objective is satisfied, whereas model replacement attempts to replace the full model
with a model that performs well on both the main task as well as the backdoor task.

While the model replacement attack seems to poison the model for more rounds
and affects accuracy on the main task less than the segment poisoning attack, there is
a tradeoff in terms of detectability. Specifically, the model replacement attack creates
a much larger malicious update when comparing to the segment poisoning attack.
The L2-norm of both updates are 6.53e+4 and 5.28e+4 for model replacement and
segment poisoning, respectively. Intuitively, this makes sense because the model
replacement attack attempts to replace the full model, whereas the segment poisoning
attack replaces only part of the model.

Malicious scaling. An additional component that is very important to model
poisoning is the malicious scaling step where the update is scaled to survive averaging
using the scaling factor γ. We show the effect of the scaling factor γ on the adversarial
success in Figure 4.4. The L2-norm grows linearly with the scaling factor, whereas
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Figure 4.3: Comparison of malicious training strategies. Attack at round 0.
C2-CIFAR A4-STRIPES.

the success of the attack follows a shape similar to the sigmoid function. In order
for an attack to be considered successful, the update must at least be scaled by 20.
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Figure 4.4: Effect of the scaling factor γ on adversarial success and size of the
malicious update. α = 2.5%. C2-CIFAR A2-WALL A3-GREEN A4-STRIPES.

4.5.2 Environment

Finally, we look at the effectiveness of the model poisoning attack under different
numbers of clients. Figure 4.5 shows a setup with under different adversarial fractions
α. We see that the number of clients has no effect on the adversarial success. This
is because an attacker can simply boost his attack by γ to outweigh any update of
benign clients. Therefore, even in a large setup with millions or billions of clients, a
single compromised client can poison the model in one round. In the next section,
we discuss defenses that aim to prevent this extreme vulnerability.
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Figure 4.5: Effect of the number of participating clients on the adversarial success
of the model poisoning attack. C2-CIFAR10 A2-WALL.

4.6 Defenses

In this section, we analyse defenses against model poisoning attacks. In the literature,
we have seen two lines of defenses. The first line proposes defenses to ensure
Byzantine resiliency, such as Krum, Bulyan, trimmed mean, and coordinate-wise
median [21,40,108]. The second line focuses specifically on the detection of model
poisoning, such as Auror [48, 99]. However, it has been shown that every defense
can be circumvented, even without knowledge of the exact defense mechanism being
used [13]. Furthermore, all defenses rely on some kind of statistical inspection of the
update or rely on the honest self-reporting of update statistics, and are therefore
not compatible with secure aggregation.
Thus, there is a need to look for defenses that are compatible with secure aggre-

gation under our threat model. We now present a proposal for an empirical defense
based on update size. We start by reviewing the properties of benign and malicious
updates and factors that contribute to the size of an update. After, we show that
clipping the update by using a norm bound is an effective defense to model poisoning
attacks. Finally, we show how to find a suitable norm bound for a given setup.

4.6.1 Update size

In the previous model poisoning attacks, an adversary crafts an update that changes
the model such that it performs a malicious objective. In order to do this successfully,
the adversary has to craft an update that has an objective that is different from the
global model, and that is sufficiently large to overpower the benign clients’ updates
during aggregation. Both of these requirements contribute to the size of the update
of the adversary, shown in Figure 4.6. The L2-norm of the malicious clients’ updates
is 8.38 versus 0.99 for benign clients. Moreover, there is a clear difference in the
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distribution of weight values: Malicious clients’ weights lie roughly in the range
[−0.1, 0.1], whereas benign client’s weights are roughly in the range [−0.015, 0.015]
We now further investigate the impact of the update size.
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Figure 4.6: Weight distribution and L2-norm for malicious and benign clients.
A2-WALL, Segment poisoning, Adv success 1.0, 40 clients.

In each round, every client starts with the same global model and performs local
training to create an update. The update characteristics shown in Figure 4.6 raise
the question of what exactly influences the size of an update. If this is known, it
would be possible to work with a certain expectation of an update. The influence
on the size of an update can be attributed to two factors. The first factor is the
training configuration, such as the hyperparameters, as well as the concrete model
being used. Recall from Section 2.1.1 that each client updates their local model w
using steps of stochastic gradient descent with learning rate η:

wt+1 = wt + η∇`wt

Each client performs r rounds of local gradient descent before sending the update to
the server. This r is influenced by the number of epochs e and batch size b, as well
as the size S of the local client dataset.

r ≈ eS

b

Clearly, the hyperparameters such as the learning rate, number of epochs and batch
size are the same for all honest clients. Furthermore, an estimation can be made
about the expected size of a client’s dataset.

The second factor is determined by the loss ` of the local dataset in relation to the
global model. This loss is expressed in the equation as the loss ∇`. It can intuitively
be understood as how much the local client’s dataset agrees with the global model.
If the global model has converged and can predict a lot of the samples right, the
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loss will be small and, hence, the update after one step of gradient descent will also
be small. We would therefore expect clients to submit updates with larger norms
at the start of training, but the norms will become smaller as the model converges.
We can see this effect over time in Figure 4.7. The L2-norm of the benign clients
is predictable and decreases over time. In contrast, poisonous updates are larger
because the malicious objective partially contradicts the global objective.
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Figure 4.7: L2-norm of benign and malicious updates over time. In every round,
the attacker crafts an update, which is not included in the averaging.
C1-FEMNIST, 3383 clients, 30 selected.

Moreover, Figure 4.8 shows a quantification of attacks in terms of L2-norm,
compared to the norm distribution of the benign clients. The model poisoning
updates increase in size with the adversarial success, and is also inversely correlated
to the fraction of malicious clients α. From this we conclude that model poisoning
requires a significant update size. Additionally, we can see that some malicious
objectives require a larger update size to inject than others. For example, the
A2-WALL model updates are consistently smaller than that for the other malicious
objectives. This is in line with the hypothesis made in [12], namely that the A3-GREEN
objective is closer to the benign clients’ distribution than the A2-WALL objective and
that this objective is therefore more successful.

4.6.2 Norm bound

In the previous section we showed that update size differs significantly between
benign and honest clients. In this section, we show that it is possible to exploit this
finding in practice to create a suitable defense. The main idea is that the norm bound
blocks the attacker from submitting a large malicious update, but does not interfere
with the contributions of benign clients. Figure 4.9 shows clearly the effectiveness of
this mechanism: The attacker can not overpower other clients by submitting a large
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Figure 4.8: Comparison of the L2-norm of attacks under different participation
rates. C2-CIFAR10 A2-WALL A3-GREEN A4-STRIPES, Segment poisoning,
LeNet5.

update, while other clients stay within the norm bound. This makes the contribution
of the benign clients and the malicious clients more proportional to each other.

Figure 4.9: Visualization of a federated learning model with a L2-norm bound for
the client updates.

We now look at the empirical performance of a setup where the server enforces a
norm bound. In this scenario, the model is under constant attack by the adversary
with a frequency of every other round. Figure 4.10 shows this setup in three experi-
ments: A baseline where benign clients can train the model freely, an experiment
where updates are clipped, and an experiment with an active adversary together
with the clipping bound. Comparing the baseline to the experiment with the active
adversary, we see that there is no decrease in accuracy. Additionally, the accuracy
for the malicious objective stays low. From this we conclude that the norm bound is
an effective defense against this attacker.
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Furthermore, from the comparison of the baseline with the clipped experiment,
we see that the clipping on its own does not decrease accuracy. Interestingly, we see
that the attacked experiment and the clipped experiment actually achieve a higher
accuracy for the benign objective. We conjecture that the L2-norm clipping achieves
some kind of regularization effect, which is beneficial for the non-IID federated
learning setup.
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Figure 4.10: Performance of a network with L2-norm bound 0.8. C2-CIFAR10, Sub-
space poisoningattack, LeNet5, 100 clients, 50 selected per round.

Norm effect

The results shown in the previous paragraph suggests that a norm bound can limit
adversarial success while not disturbing model accuracy. We now further investigate
the effect of the norm bound on the model. Figure 4.11 shows the performance of
the global and malicious objectives under the L2 and L∞ norm bounds. At either
extreme of the norm range, the accuracy of the global objective diminishes. If the
norm bound is too low, benign clients can not train the model enough and the
accuracy stays low. Conversely, if the norm is too high, adversaries can get too much
influence and poison the model, resulting in a high adversarial success and a lower
model accuracy on the main task.

Figure 4.12 provides further evidence for this point, by displaying the accuracy on
the main task under various L∞- and L2-norm bounds. The results suggest there
exists an optimal point somewhere in the middle where the accuracy is close to the
baseline, i.e. the setting without any attacker or norm bound. At this particular
point, the attacker is not able to sufficiently scale the malicious update to inject the
backdoor, while benign clients can still provide enough influence.

Comparison of both norms

Figure 4.12 shows that the L∞-norm affects global model accuracy significantly
after a bound of 0.00015. In comparison, this is a harsh effect in comparison to the
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Figure 4.11: Performance of the continuous model poisoning attack under different
norm bounds. C1-FEMNIST.

impact of the L2-norm at low norm bounds, which reduces accuracy but much more
graceful. This behavior is expected, because the L∞-norm provides a rigid way to
ensure client updates are not too large. With the L∞-norm, the bound must be the
same for both small and large parameters. However, this is problematic because,
in machine learning, some updates to parameters are inherently larger than others,
depending on the random initialization of the model. The L2-norm bound provides
more flexibility, because it enforces a bound on the total update size. This way,
smaller parameters can compensate for larger parameters, which Figure 4.12 shows
works better for our networks. Thus, we conclude that the L2-norm bound is less
sensitive to the concrete bound than the L∞-norm bound. This insight is useful
because in many cases, it is impossible to find the optimal norm bound and an
approximation must be used instead.

Weight regularization

Existing attacks propose evasion techniques to avoid anomaly detection defenses.
One of these techniques is to include a weight regularization term in the objective
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Figure 4.12: Performance of the continuous model poisoning attack under different
norm bounds. C1-FEMNIST.

that the adversary optimizes. This term ensures that the update stays close to
the original model, because otherwise the loss increases. The balance between the
malicious objective and this regularization is defined by a weight regularization
factor µ with 0 < µ < 1. The adversary can vary the value of µ to find a tradeoff
between attack effectiveness and detectability. However, in Figure 4.13 we show that
under a suitable norm bound, the adversarial success is very low for all values of µ.
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Figure 4.13: Comparison of adversarial success under various weight regularization
rates. C2-CIFAR A3-GREEN, L2-norm bound of 0.8.
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4.6.3 Improving Attacks

The previous model poisoning attacks did not take the clipping bound into account.
We now show how the attacker may attempt to improve this attack, but show
empirically that this quickly becomes infeasible in a reasonable federated learning
setup.
With a norm bound, the objective for the adversary becomes: Given a clipping

bound constraint, find an update that minimizes the cross-entropy loss for the
malicious objective that lies within this bound.

minimize
xt
m

1

|D̃|
∑

(x̃,ỹ)∈D̃

`xent(fwt
m

(x̃), ỹ,wt
m) s.t. wt

m ∈ C

Where C is the set of allowed values for wt
m under the norm bound. For instance, if

the L2-norm bound is applied, the attacker must find an update vector wt
m that lies

within the ball with radius β around wt
G:

C = {x | ‖x−wt
G‖2 ≤ β}

However, in federated averaging, the global learning rate θ and the number of clients
n directly influence the contribution of a selected client’s update:

wt+1
G = wt

G +
θ

n

∑
i∈S

wt+1
i = wt

G +
θ

n

∑
i∈S\m

wt+1
i +

θ

n
wt+1
m

Because the attacker’s update has to survive averaging, we assume the malicious
update must take scaling into account. We can therefore rewrite the constraint to
the following with scaling factor γ:

C = {x | ‖x−wt
G‖2 ≤

β

γ
}

The objective for the attacker is now to find an update that conforms to the norm
bound β when scaled by γ
The above minimization problem can be approximated using the Projected Gra-

dient Descent (PGD) algorithm, which is discussed in Section 2.1.4. The PGD
algorithm does not provide any guarantees on finding the best possible update. In
order to potentially find a better update, PGD may be run multiple runs from the
same initial weights. At each run, the initial weights are slightly changed using
random noise, to make the algorithm converge to a different local minimum.
Figure 4.14 shows that attacks crafted using PGD are not more effective than

regular scaling attacks. The attacks do not influence global model accuracy in
comparison to the baseline and are ineffective.
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Figure 4.14: Persistent PGD attack every other round under norm bounding defense
0.8. C2-CIFAR10 A3-GREEN, LeNet5, 100 clients, 50 selected per round.

4.6.4 Setting the Norm Bound

We have shown that norm bounding that makes it significantly harder to perform
model poisoning in a reasonable federated learning setup if an appropriate norm
bound is used. We now discuss a method to find an appropriate norm bound for
given setup.

The main insight is that the L2-norm of the benign clients is predictable because
the training parameters are the same for all benign clients. Therefore, only the
variance in the training data between clients affects the spread of client updates,
shown in Figure 4.15.

Given some training data, we can estimate the distribution of client update sizes,
by simulating a client performing several rounds of training with the given parameters.
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Figure 4.15: Comparison of L2-norm distribution of benign clients for IID and non-
IID data distributions. C2-CIFAR10.
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We can then set the bound at the (1− ε)-th percentile of the distribution, depending
on the expected fraction of adversaries α. If α is high, the norm bound must be
tight, so a high ε is necessary. This can impact the accuracy of the network slightly
by limiting the contributions of the benign clients, so it must be chosen carefully.
However, our results from the previous section show that for a reasonable α, the
norm bound does not impact model accuracy while successfully preventing attacks.
The implementation of the norm bound selection process under secure aggregation
is further discussed in Section 5.5.3.

4.7 Conclusion

Model poisoning attacks are a serious threat to the integrity federated learning models.
Without any defense, the capabilities for an adversary are disproportionately high
in relation to the rest of the clients: An adversary controlling a single malicious
client in a network with millions of devices can introduce a backdoor in the model
in a single round that can potentially persist for many rounds. We have seen how
attacks behave for different training strategies, malicious objectives, scaling factors
and regularization techniques. These insights on attacks are important because they
allow us to come up with suitable measures that are effective under many conditions.
If we do not address these issues, we leave real world federated learning setups,
which we increasingly rely upon, vulnerable to integrity attacks.

In this work we show that norm bounding is an effective defense against model
poisoning attacks, because malicious updates have to be much larger than benign
updates in order to convey the malicious objective in the model and survive the
averaging with the updates from other clients. The comparison of the updates of
benign clients and attacks show there is a clear difference in update size. Thus,
by providing an upper bound on the update size, we can impede the adversary in
its attack. Moreover, even when improved attacks such as PGD are used, norm
bounding still proves effective.
The use of a norm bound restricts the adversary from only contributing to the

model in proportion to the other clients. The attack potential becomes a question
of relative contribution: if the attacker can compromise a large enough fraction of
clients α, an attack is successful. However, we have empirically shown that even for
a very high α of 5%, attacks are impossible under a norm bound. Therefore, we
can conclude that norm bounding is an effective defense for model poisoning in a
reasonable federated learning setup. This insight can guide us in the development of
a protocol for federated learning that is robust against model poisoning attacks.
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This chapter presents the design of a new protocol for robust privacy-preserving
federated learning. The chapter is structured as follows: We start by defining the
objectives and threat model we cover in this work. Then, we give a high-level
overview of the protocol, after which we review the details for each of our design
components. We then discuss how we achieve robustness against malicious client
updates. Finally, we show how we optimize the protocol to scale and meet the
performance requirements of federated learning workloads.

5.1 Objectives

In Chapter 4 we showed and analyzed how the norm bounding can be an effective
solution for model poisoning attacks.
Based on the insight that norm bounding can be effective in limiting adversary

success; this holds even in small setups where it is possible to find a norm bound
that limits the attacker while not impacting model accuracy. The goal of this thesis
is to develop a new secure and robust aggregation protocol for federated learning
that effectively incorporate norm bounding for integrity. More specifically, we design
a federated learning protocol that fulfills the following requirements:

1. Privacy-preserving clients’ updates: As individual updates can reveal
sensitive information. The individual update xi of the clients must be kept
private. Formally, when a client update has f -privacy, the aggregation server
should be able to learn nothing more about all xi, except what they can learn
from the output of the aggregation function f(x1, ...,xk).

2. Robustness: The aggregation protocol should resilient to poisoning attacks
from malicious clients.

3. Scalability: The protocol must be efficient enough to deploy at scale, in
particular for a large number of clients and for models with a reasonable
number of parameters.

Similar to the setup used in the analysis in Chapter 4, we assume a typical
federated learning setup containing a server, multiple clients, and an adversary that
can compromise one or more clients. The parties iteratively train a shared global
machine learning model on a shared task of which the clients individually hold a
potentially disjoint, non-IID subset of the training data. The iterative process is
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divided in rounds, in which the server shares the current global model with the
clients, the clients train the model locally and then submit an update to the server.
At the end of the round, the server aggregates all the client updates and updates
the shared global model.

5.1.1 Threat Model

The protocol is designed under the assumption that both clients and the server can
misbehave. We assume the server to be honest-but-curious, i.e., the server follows
the protocol correctly but will analyze all observed data to gain as much information
as possible. This is not such a far-fetched belief because in federated learning the
server is often controlled by the service provider who has an interest in providing a
well-functioning service. The server follows the protocol correctly but may try to
gain additional profit by trying to collect as much data as possible from the clients.
We assume that the server can store and analyze all messages it gets from clients.
Additionally, the server is not able to inspect the client’s local training data or
influence the training process. We assume that the clients and server communicate
over a secure channel and clients and the server are authenticated using a Public
Key Infrastructure (PKI).

On the client-side, we assume at most a fraction α of clients can be compromised
by the adversary. While benign clients do not know of each others existence, clients
compromised by the adversary can communicate and exchange information freely.
Malicious clients can deviate from protocol at any point by withholding, malforming,
or replaying messages. However, due to the existence of the PKI, the attacker can
not impersonate or simulate arbitrary parties. Instead, we focus particularly on the
attack where the goal of the adversary is to make the global model converge to a
poisoned version in which it performs some malicious task. To this end, malicious
clients may propose compromised model updates that will infect the global model.
Because the setup uses a secure aggregation protocol, the contribution of each client
into the global aggregated model cannot be attributed to an individual client, severely
impairing the server’s defensive possibilities. Similar to the honest-but-curious server,
the adversary can not access the training data of the benign clients, nor inspect the
training process. The adversary does have full knowledge of the configuration of
the federated learning system such as the training hyperparameters and number of
clients, following Kerckhoff’s principle.

Out of scope attacks.

This work does not consider the following attacks that are possible under our threat
model:

• Attacks on privacy through inspecting the parameters of the global model
f(x1, ...,xk). While our protocol hides individual client updates, the global
model that is shared with all clients and the server may still leak information
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of the clients’ dataset, even after aggregation. In order to overcome this,
techniques such as differential privacy [39] may be used. In differential privacy,
the disclosure of an individual client’s private information in some aggregate
statistics or machine learning model is theoretically limited. This is done
by adding sufficient random noise to the model. For a formal definition of
differential privacy, we refer to Appendix A. Much work on this topic already
exists [20,50,95,103] and can be applied complementary to our protocol. As this
work focuses on model integrity in federated learning under secure aggregation,
we deem the privacy of the shared model out of scope.

• Attacks through side-channels such as timing attacks. Timing attacks measure
the time it takes for a client to perform cryptographic operations in an attempt
to infer sensitive information. In other fields, it has been shown [67] that
timing attacks can be very subtle by statistically filtering out the influence of
other operations based on time, making it possible to precisely measure the
duration of the operations that reveal the sensitive information. Timing attacks
can be prevented using algorithms that rely on constant-time cryptographic
operations. Side-channel attacks are a separate field of study and ways to
mitigate such attacks can in principle be applied to our protocol.

• Denial-of-Service attacks. Clients may behave in such a way that prevents
the protocol from giving an output, by providing malicious blinding values or
withholding messages. This malicious behavior is detectable in the protocol
by the server, so it can never cause a wrong protocol output. Upon detection,
the server can abort the round and start over. In practice, the impact of the
Denial-of-Service attack vector is limited, as it can be easily mitigated, i.e.,
upon the detecting of such an attack, the server can restart the round with
a different set of clients. Furthermore, because the clients are all uniquely
identifiable, the server can employ a system to keep track of which clients were
included in which rounds in an attempt to identify the compromised clients
and exclude them from the system.

5.2 Protocol Overview

Our approach makes use of a homomorphic commitment scheme together with
cryptographic proofs to achieve privacy-preserving aggregation and guarantees for
model integrity. In the previous chapter, we show that norm bounding can be an
effective mechanism to ensure integrity without compromising accuracy. In our
protocol, we resort to the use of cryptographic proofs to enforce and ensure that the
received encrypted updates conform to our desired norm bound.
Client updates are encrypted using the homomorphic commitment scheme and

aggregated at the server. In addition, clients submit cryptographic proofs for the
commitments attesting that their update lies within the given norm bound. The
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server then decrypts the aggregate and verifies the cryptographic proofs the ensure
the updates lie within the norm bound range.

We now give a high-level overview of the protocol, and then go on to explain core
components such as update aggregation and verification in detail. The protocol
consists of a setup phase and a training phase.

Setup Phase. In the setup phase, the server shares the configuration of the
federated learning setup C with the clients. This configuration contains the properties
for the model, training parameters, and the security parameters. After receiving the
required configuration, the clients enter into the training phase.

Training Phase. The training phase is organized in rounds. In each round, the
server and clients communicate in a sequence of steps:

1. Weight download: The server selects a subset of clients K to participate in
the current training round. The server then transmits the model weights wt

G

to all the participating clients K, along with the required norm bound B.

2. Client training: The clients compute a local update ∆wt+1
i using the local

training algorithm. They ensure the update conforms to the bound B by
clipping or scaling if the update exceeds the bound.

3. Update aggregation: The clients encrypt their update and perform a secure
aggregation protocol together with the server, resulting in an aggregated update
∆wt+1

G as output at the server.

4. Update verification: Every client proofs that their update lies within the
given norm bound. To this end, each client generates a set of zero-knowledge
proofs Rt+1

i that proofs this norm bound and sends these to the server. The
server verifies correctness of the zero-knowledge proofs for each client.

5. Weight update: The server applies the update to the global model together
with the global learning rate θ: wt+1

G ←− wt
G + θ∆wt+1

G

The protocol is visualized as a sequence diagram in Figure 5.1. The protocol
terminates after T rounds, or after a specific accuracy has been reached by the global
model.

5.3 Update Aggregation

In essence, the aggregation protocol in our setup is similar to the general federated
learning aggregation protocol but includes additional steps that ensure confidentiality
and integrity. After performing local training, each client holds a local model update
∆wi that it wants to send to the server. To ensure client update f -privacy, clients
encrypt their updates in a way that the server can only have access to the output
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Figure 5.1: Sequence diagram of the protocol.
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aggregate of all the client updates ∆wG but cant see any individual update. To
ensure confidentiality and integrity, we design a secure aggregation protocol that is
specifically tailored to allow the enforcement of norm bounding.

First, we explain how the privacy of client updates is preserved with regards to the
honest-but-curious server using a secure aggregation protocol. Then, we present how
the vanilla secure aggregation protocol can be made resistant to abuse by actively
adversarial clients.

5.3.1 Secure Aggregation

Notation: In the rest of the chapter, we denote variables that are vectors with
bold symbols w and the ath element with a superscript wa. A variable that belongs
to client i is denoted with a subscript wi, and variables that are global with a G
subscript wG. Additionally, the elementwise exponentiation of a vector w with g is
denoted as gw. Finally, [x]D denotes a vector of D elements x.

Protocol: Our protocol operates on a group G of prime order p with publicly
known generators g, h ∈ G. We assume the parameters in the clients’ model update
are elements of Zp, i.e. ∆wi ∈ ZDp . At the start of secure aggregation, every client
generates a commitment to their update vector ∆wi using the ElGamal commitment
function. A more elaborate description of ElGamal commitments can be found
in Section 2.2.2. In our protocol, the purpose of the ElGamal commitments is
two-fold. First, they are used to hide the update ∆wi from the server. Second, the
commitments allow the clients to prove the norm bound in zero-knowledge later on
in the protocol, because of the binding property. Given a vector of blinding values
bi ∈ ZDp of the same size as ∆wi, a client commits to their update ∆wi as follows:

~Ce(∆wi,bi) = (g∆wihbi , gbi)

where ~Ce denotes the elementwise application of the ElGamal commitment function
Ce. For now, we assume every client i receives a vector of random blinding values bi
from a trusted third party that cancel out when added together:

∑
i∈K

bi = 0D

where 0D denotes a vector of length D consisting of all zeroes. We describe how
clients attain this vector of canceling blinding values without the requirement of a
trusted third party in Section 5.3.3.
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Every client encrypts their update vector ci ←− ~Ce(∆wi,bi) and sends ci to
the server. The server then adds all the vectors of the homomorphic ElGamal
commitments ci element-wise together:∏

i∈K

ci = ~Ce(
∑
i∈K

∆wi,
∑
i∈K

bi)

= ~Ce(
∑
i∈K

∆wi,0
D)

=
[
(g

∑
i∈K ∆wih0, g0)

]D
=
[
(g

∑
i∈K ∆wi , g0)

]D
The server is then left with a vector with tuples of two group elements for each
parameter in the model. The first element of tuple i contains parameter wi of
the global model update, i.e. the sum of this parameter of all the client updates
∆wiG =

∑
k∈K ∆wik, and the second element contains the neutral element.

[
(g

∑
i∈K ∆wi , g0)

]D
=
[
(g∆wG , g0)

]D
=


(g∆w1

G , g0)

(g∆w2
G , g0)
...

(g∆wD−1
G , g0)

(g∆wD
G , g0)


Decrypting the update. The last step of the secure aggregation is the decryption
of the aggregated ElGamal commitments vector (g∆wG , g0)D by the server to retrieve
the global model update ∆wG. In order to do this, the server has to compute, for
every tuple, the discrete log of g∆wG . Recall that we assume that the discrete log is
hard for our group G. However, we have an expectation of the value of ∆wG, making
the computation of the discrete log using a non-polynomial algorithm feasible, as
we only have to check the values that are close to our expectation. Concretely, in
our case the expectation is that ∆wG is at most 8-, 16- or 32-bits long, which is
feasible to compute using an algorithm such as baby-step giant-step [98], which has
a running time of O(

√
n).

5.3.2 Active Adversarial Clients

We have described how our protocol guarantees f -privacy of the client’s updates and
works correctly when clients are honest. We now explain how our protocol protects
against dishonest clients
Recall from the security definition of our secure multi-party protocol that a

protocol is secure if the adversary cannot achieve anything in the protocol that he
could not achieve in the specification [79]. Therefore, in the next paragraphs, we
focus on how the protocol prevents actively malicious clients from deviating from
the secure aggregation protocol, but not how it prevents malicious clients from
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submitting a malicious update ∆ŵi to perform a model poisoning attack. Preventing
model poisoning attacks using norm bounding is discussed in Section 5.4.

Invalid blinding values. Because actively malicious clients may deviate from the
protocol at any time, an adversary can submit malicious blinding values that do not
cancel out with the other blinding values. If the blinding values do not cancel out,
the commitment containing aggregate model update ∆wG is compromised and will
provide no useful information:

g
∑

i∈K ∆wih
∑

i∈K bi 6= g
∑

i∈K ∆wih0

Furthermore, it will be very likely that decryption is impossible because the update
now lies outside the expected range of values. To protect against this attack, the
server can verify that the second element in the ElGamal commitment tuple is equal
to the neutral element g0 for all parameters. If this is not the case, the server knows
the blinding values do not cancel out and can restart the round with a different
subset of clients.

While the server can not prevent malicious clients from submitting invalid blinding
values, the protocol does prevent the output of garbage values by making abuse
detectable. Furthermore, in the case that repeated attacks occur, the detectability
allows the server to get an intuition on which client is malicious. For even more
resiliency against this type of attack, the server can keep track of which clients
participated in which failed rounds. This way, the server is able to discover which
client is responsible for the abuse and exclude this client from the protocol. For this
reason, we deem this attack vector on the protocol acceptable, because the impact
is limited as the attack is detectable and can be mitigated accordingly.

Correctness of the ElGamal commitments. We have seen that submitting the
wrong blinding values in the ElGamal commitments is detectable by the server. How-
ever, an adversary is also able to submit a completely invalid ElGamal commitment.
Specifically, an adversary could submit a commitment,

(gwhb
′
, gb)

where b is the correctly canceling blinding value, and b′ is a malicious blinding value
such that b′ 6= b. Now, the check at the server of the second parameter will succeed,
while still compromising the global model update. To overcome this, we need a
guarantee that the ElGamal commitment was constructed correctly, i.e. that the
blinding values used in both elements of the commitment are the same, b′ = b.

To this end, we use a zero-knowledge randomness proof, or randomness proof. With
the randomness proof, given an ElGamal commitment (cl, cr) ∈ G2, the client proofs
that they know an opening (x, r) of the commitment such that (cl, cr) = (gxhr, gr).
Formally, the property is captured in the predicate:

Q((x, r), (g, h, (cl, cr))) = ((cl, cr)
?
= (gxhr, gr)
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This is implemented using a Sigma protocol. In Section 5.4, we show the random-
ness proof is integrated in the update verification step of the protocol.

Client Dropout In a setup with a set of loosely federated, unreliable clients in an
unreliable network, client dropout can be a regular occurrence. Our protocol can
handle client dropouts following the solution proposed by Bonawitz et al. [23]. In
this approach, clients share their blinding values using a threshold secret sharing
scheme with other clients. When a client does not submit their update to the server,
the other clients can reconstruct the blinding value of the dropped client, as long as
there are more benign clients than the threshold.
However, only secret-sharing the pairwise blinding values introduces another

security problem: The server can lie and claim a client has not sent their update,
triggering the reconstruction of the users blinding value. With this blinding value
and the client’s commitment, the server can now access the secret value of the client.
To prevent abuse from the honest-but-curious server, clients use a secondary, private
mask, which is also secret shared. Benign clients only reveal a share for one of the
two blinding values per client, and not both. This forces the server to make a choice
in the aggregation round, namely to ask for a share of the pairwise shared mask, or
for a share of the private mask for every client.

5.3.3 Removing the trusted setup

To improve readability, we assumed the existence of a trusted third party to distribute
the vectors of element-wise canceling blinding values bi. We now explain how to
remove the need for a trusted third party by performing some additional steps in
the setup phase.

At a high level, every pair of clients (u, v) in the set of clients K for u < v agrees
through some protocol on a common random vector su,v. Note that we assume some
kind of topological ordering on the set of clients K. This is in practice achievable
in many ways, for instance, by using the client’s public key as input. With these
shared vectors, each client computes their own vector of blinding values bi. We first
explain how a client u creates their blinding vector bi, given the random vectors
su,v shared with every other client. Afterwards, we describe how two clients agree
on these random vectors.
To create blinding values that cancel out when added together, clients compute

the following. Recall that a client u already shares a random vector with every other
client, which can be expressed as {su,v | u, v ∈ K ∧u < v}∪{sv,u | u, v ∈ K ∧u > v}.
A client u then computes their vector of blinding values by adding the random
vectors shared with clients of a lower order and subtracting the random vectors
shared with clients of a higher order.

bu =
∑

v∈K:u<v

su,v −
∑

v∈K:u>v

su,v
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The blinding values bu cancel out when they are added together. To prove this,
we show that each shared random vector is added and subtracted exactly once:

∑
u∈K

bu =
∑
u∈K

( ∑
v∈K:u<v

su,v −
∑

v∈K:u>v

su,v

)
=

∑
(u,v)∈(K×K):u<v}

(su,v − su,v)

= ~0

Shared random vector agreement. To establish a shared random vector, clients
engage in a Diffie-Hellman key agreement protocol as described in Section 2.2.3.
If this is done naïvely, this protocol step incurs an overhead with a complexity of
O(K2D) per round where D is the number of parameters in the model and K is
the number of clients. However, two optimizations can be applied to reduce the
complexity to O(K2) and to allow the agreement protocol to run only once.
First, instead of performing Diffie-Hellman key agreement for each parameter,

two clients can agree on a single value that is then used as an input seed to a
Pseudo-Random Generator (PRG). The PRG then expands the randomness of the
single value to a full vector of values. This reduces the amount of key agreement
protocol executions from D times to just once.
Second, we can use the shared random values of round t in combination with

a cryptographic hash function to generate the shared random values of round t.
Because of the deterministic property of the hash function, we only need to perform
key agreement once in the first round.
In conclusion, we can use Diffie-Hellman key agreement in the setup phase for

clients to agree on pairwise shared vectors which are then converted into canceling
blinding values used in aggregation. This removes the need for a trusted third party
at an additional cost of O(K2) at the start of the protocol.

5.4 Update Verification

The goal of update verification is to constrain the impact of malicious contributions
on the aggregation process. A client compromised by the adversary can send
a malicious update ∆ŵ to the server to perform a model poisoning attack. In
Chapter 4, we showed that norm bounding is an effective defense against model
poisoning. Norm bounding prevents the adversary from performing model poisoning
attacks by limiting the size of the contribution to the model per client. In this section,
we explain how we implement norm bounding of the client updates ‖x‖p ≤ B using
zero-knowledge proofs, with B defined by the server .
Our protocol supports two kinds of norm bound p: The L2- and the L∞-norm.

We start by explaining how the L∞-norm bound is constructed, which only requires
a single type of zero-knowledge proof: parameter-wise range proofs. Afterwards
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we review the construction of the L2-norm bound, which needs two types of zero-
knowledge proofs in addition to the parameter-wise range proofs: proof of square
commitments and a single L2-norm range proof.

5.4.1 L∞-Norm

For the L∞-norm bound, each parameter of the client’s update vector ∆w is
constrained to a given bound. To achieve the L∞-norm bound, we only need to
prove that every parameter lies within the bound using a parameter-wise range proof.
Given the update ∆wi from client i containing the vector of ElGamal commitments
[(gxhr, gr)]D, Formally, given a bound B, we require every parameter x ∈ ∆w to be
within the range [−B,B]. We use the Bulletproof [26] range proofs that provide
fast proof generation and verification. Furthermore, the proof size is small and
logarithmic in the number of bits n in the range. Bulletproofs also support batching
of proofs for the same range, with the proof size growing logarithmically in the
number of proofs.
The cryptographic proof validates that the value lies within a range that is a

power of 2, i.e. [0, 2n]. To be able to proof a parameter lies in the [−B,B] range,
we first choose an n such that 2n−1 < B ≤ 2n. Then, the clients homomorphically
shift the commitments to the parameters gxhr by g2n−1 and proof that the shifted
parameters x+ 2n−1 lie in the range [0, 2n].

5.4.2 L2-Norm

As shown in Section 4.6.1, the L2-norm bound is less sensitive to the concrete norm
bound value than the L∞-norm. This is because the L∞-norm provides a more rigid
way to ensure client updates are not too large by enforcing the same limit for every
parameter, whereas the L2-norm enforces a bound on the total update size.
The previously described L∞-norm for D parameters implicitly bounds the L2-

norm to
√
K2(n−1)2 because the parameter vector can at most have an L2-norm of

this size. However, the bound is not a t as the true L2-norm, because the lower
parameters in the vector can not compensate for the higher parameters. In addition
to this flexibility, the construction of the L2-norm has two practical advantages over
the L∞-norm.
First, it is better compatible with some scalability improvements. Some of these

improvements, such as random subspace learning, rely on a random transformation
of the weight matrices. The transformation matrix has orthogonal columns, which
means that it preserves the inner product between two vectors, which implies the
L2-norm of the vector is preserved. We further elaborate on this in Section 5.6.
Second, while the overhead for both the L2-norm and the L∞-norm are similar,

the L2 allows for better fine-tuning of the norm without much additional overhead.
This is because it takes only a single range proof for the actual L2-norm bound itself.
This point will become more clear after reviewing how the L2-norm is constructed,
we discuss this further in Section 5.5.2.
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We now explain how the L2-norm bound proof is constructed. Instead of bounding
the L2-norm by a bound B, which contains a square root, we bound the squared
L2-norm by B2.

‖x‖2 ≤ B ⇐⇒ ‖x‖2
2 ≤ B2

This is possible because both the norm and the bound are always positive and it
lets us avoid an expensive secure square-root operation. The squared L2-norm of a
vector x ∈ RD is defined as:

‖x‖2
2 =


√√√√ D∑

i=1

x2
i

2

= x2
1 + · · ·+ x2

D

The proof for the L2-norm consists of three components.

1. Square commitments. For each parameter x, a commitment to the square
of x, gx2hr, as well as a zero-knowledge proof that states that the commitment
to x and the commitment to x2 are in fact the same x.

2. L2-norm range proof. A range proof to prove that the sum of the commit-
ments to the squares is within [0, B2], which is exactly the squared L2-norm.

(3.) Parameter-wise range proof. The parameter-wise range proof for each
parameter x, which we also used for the L∞-norm, declaring that it is within
[−B,B]. These parameter-wise range proofs are required to ensure that no
arithmetic overflows occur, i.e., if a client submits a large x that overflows the
L2-norm in the 256-bit group bringing below the bound B. However, because
they exist to only prevent overflow and not the exact norm bound itself, the
actual bound B does not have to be very precise, because the L2-norm range
proof already bounds the update norm.

We now review the two additional components required for the L2-norm proof.
For simplicity in the next section, we provide an explanation for a single parameter
x, but the operations are done to every parameter in the update vector.

1. Square commitments: Recall from the definition of the L2-norm that in order
to compute L2-norm, we need to get the square of each parameter x. Because the
partially homomorphic ElGamal commitments only support homomorphic addition,
it is impossible to calculate the square of x using our existing commitment to
x, (gxhr1 , gr1). Therefore, the client has to perform this calculation and send an
additional commitment to the square of x. The x2 is in this case is sent as a
Pedersen commitment, as we do not need the second group element that represents
the randomness. In fact, the client can use any randomness r2 in the Pedersen
commitment to x2.

Along with this extra commitment, the client must submit a zero-knowledge proof
that proves that the computation was performed correctly. In other words, the client
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proves that the same x is used to construct the ElGamal commitment (gxhr1 , gr1)
as well as the Pedersen commitment gx2hr2 . For efficiency reasons, we incorporate
this zero-knowledge proof of knowledge in the already existing randomness proof,
referring to it as the squared randomness proof. We refer to this as the squared
randomness proof and the exact details are described in Section 5.4.3.

2. L2-norm range proof: With the commitments to the square of the parameters
gx

2
ihr2,i , the server can compute the squared L2-norm using the homomorphic property

of the Pedersen commitments:

D∏
i=1

gx
2
ihr2,i = g

∑D
i=1 x

2
ih

∑D
i=1 r2,i

= g‖x‖
2
2h

∑D
i=1 r2,i

= cL2

What remains is for the client to provide a zero-knowledge proof that ‖x‖2
2 ≤ B2 = 2n

2

using a range proof for the predicate:

Q((‖x‖2
2,

D∑
i=1

r2i), (g, h, cL2)) =
(
cL2

?
= g‖x‖

2
2h

∑D
i=1 r2i ∧ ‖x‖2

2 ∈
[
0, 2n

2
])

We implement this single range proof using a Bulletproof range proof. The server
verifies this zero-knowledge proof together with its own computation of cL2 to verify
that the L2-norm proof is correct. We now have a full construction of the L2-norm
bound zero-knowledge proof.

5.4.3 Squared Randomness Proof

At this point, there are two things left to prove. First, as explained in Section 5.3.2,
we need to prove that the parameter ElGamal commitments (gxhr, gr) contain
the same randomness r within the commitment tuple, which we refer to as the
randomness proof. Second, for the L2-norm, the client needs to provide a proof of
square relation, i.e., show that the commitment gx2hr contains the same x as in the
parameter commitment gxhr. Because both proofs operate on the same ElGamal
commitment, and are proofs of knowledge, we can efficiently combine them into a
single Sigma protocol. Note that the second proof is only required for the L2-norm
proof and for the L∞-norm, only the randomness proof is needed. We can therefore
use a subset of the squared randomness proof in the case of the L∞-norm. We now
explain how the squared randomness proof works.
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Proof of Square Relation

We know that we can create a Sigma protocol to proof knowledge of the pre-image
of any group homomorphism f [80]. However, considering our function to commit
to the square of x,

f : Z2
p −→ H : (x, r) 7→ gx

2

hr

is not homomorphic, because:

f(a+ b, r + r) = f(a, r)f(b, r)⇐⇒
g(a+b)2h2r = ga

2+b2h2r ⇐⇒
(a+ b)2 6= a2 + b2

To solve this, we can proof a slightly different relation: Given (El, Er) = (gxhr1 , gr1)
and P = gx

2
hr2 , we can rewrite P in the basis of El instead of g

P = gx
2

hr2 = gx
2

hxr1hr2h−xr1 = (gxhr1)xhr2h−xr1 = El
xhr2−xr1

Prover Verifier
knows x, r1, r2 knows (El, Er) = (gxhr1 , gr1)

and P = gx
2
hr2

k, l,m ∈R Zp
(tl1, t

r
1) = (gkhl, gl)

t2 = El
khm

(tl1,t
r
1),t2−−−−−−−−→

c ∈R C ⊆ Zp
c←−−−−

r = k + cx
s = l + cr1

q = m+ c(r2 − xr1)
r,s,q−−−−−−→

check grhs ?
= tl1 · Elc

and gs ?
= tr1 · Erc

and Elrhq
?
= t2 · P c

Figure 5.2: Squared randomness proof protocol. The parts marked in black corre-
spond to the randomness proof, whereas the parts marked in blue are
only required for the proof of the square relation for the L2-norm.
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Protocol

The insight on the square relation can be incorporated in the already existing
randomness proof protocol. The full squared randomness proof is shown in Figure 5.2,
and works as follows:

1. The prover picks the values k, l,m at random from Zp and computes the
ElGamal commitment to (k, l) and the Pedersen commitment of (k,m) in base
El.

2. The verifier picks a challenge c at random from the challenge space C ⊆ Zp
and sends it to the prover

3. The prover computes the response r, s, q based on the challenge and the values
it has committed to in the first round, k, l,m. The prover then sends r, s, q to
the verifier.

4. The verifier checks the equality of the three equations. With this step, the
verifier checks whether the randomness in the two elements of the ElGamal
commitment match, and whether the value x used in the ElGamal and in the

Security Proof

We now proof the correctness and security of the squared randomness proof. As
established by Maurer [80], a sound, proof of knowledge honest-verifier zero-knowledge
protocol can be established for any one-way group homomorphism, provided that
two additional properties are met as stated in Theorem 2.2.3. If we can show that
our protocol can be seen as a proof of knowledge of the pre-image of a one-way
group homomorphism f and proof two additional properties of Theorem 2.2.3, we
get the security properties for free.

In our case, we consider the following two functions. f1 is the ElGamal commitment
function and f2 is a commitment to the square of x:

f1 :Z2
p −→ H2 : (x, r) 7→ (gxhr, gr) (5.1)

f2 :Z2
p −→ H : (x, r) 7→ gx

2

hr (5.2)

Clearly, f2 is not a group homomorphism. However, we can rewrite f2 in the base
of the first output of f1, as such:

f ′2 : Z2
n −→ H : (x, r) 7→ (gx

′
hr
′
)xhr−xr

′
)

f2 is now homomorphic. We can combine two separate homomorphic functions
into one1:

1Note that in the case of the L∞-norm bound proof, only the randomness proof part is required,
which is means f2 is not used. It then suffices to set F = f1, and the rest of the formal proof
still holds if we set u = (0, 0).
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F : Z3
n −→ H : (x, r1, r2) 7→ (gxhr1 , gr1 , (gx

′
hr
′
)xhr2−xr

′
)

The function F is a one-way homomorphic function. Additionally, if we set ` = p
and u = (0, 0, 0), Theorem 2.2.3 applies. From this it follows that F is 2-extractable
and c-simulatable. Therefore, our protocol is a proof of knowledge and perfect
zero-knowledge.

5.5 Practical Considerations

In this section we discuss three practical considerations for the protocol. First, we
explain how we convert our parameters between machine learning and cryptographic
formats. Second, we discuss how we relax the constraint of the norm bound having
to be a power of 2 to arbitrary bounds. Finally, we describe a method to select a
suitable norm bound in our protocol.

5.5.1 Fixed-point Representation

The machine learning architecture makes use of numbers in floating-point format.
However, the cryptographic primitives that we rely on for aggregation require
elements from Zp as input. Hence, there is a need to convert from floating-point
to integer representation and back. In order to achieve this, we use a fixed-point
representation of the floating-point numbers.
Fixed-point representations encode numbers with the decimal point at a fixed

position, the phenomenon from which it lends its name. We refer to a fixed-point
representation of n bits using m decimal bits as a (n,m)-fixed-point encoding. An
example of a number encoded in fixed-point representation is shown in Figure 5.3.
Starting from a floating-point number, the number is rounded to the closest number
in the fixed representation. Furthermore, if the number lies outside of the range of
fixed-point representation, it is clipped to the closest extreme. Information may be
lost in this quantization process, which we quantify in Section 7.4.1. A schematic
overview of the conversion process is as follows:

float quantize−−−−→ fixed-point interpreted as−−−−−−−→ Zp
The use of fixed-point representation impacts the meaning of the range proofs,

because the firstm bits encode decimal numbers. Therefore, instead of proving that a
value lies in the range [0, 2n] for all n ∈ N, it actually shifts the range to [0, 2n−m]. For

1010 0010

+12 0.125

Figure 5.3: The number 10.125 in (8,4)-fixed-point representation
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example in our (8,4)-fixed-point encoding, if we want to prove a range of n = 2 bits,
we are actually proving that the value lies in the range [0, 22−4] = [0, 1

22
] = [0, 0.25].

Arithmetic. The numbers, after being converted to fixed-point representation,
are treated by the cryptographic protocol as integers in Zp. This is, however, an
incorrect assumption as the encoded numbers actually represent fractional values
and not integers. This can pose problems when arithmetic is performed on the
encoded values, as they may not be meaningful for the representation that the
numbers are in. We must therefore carefully consider the arithmetic operations used,
specifically addition and multiplication, under this encoding. To do this, we examine
how each operation treats the encoded value as if it were encoded as an integer in
two’s complement, and see what the effect this has on the encoded value.

For addition, the effect is the same for both integer and fixed-point representation.
This is because the fixed-point representation can be seen as an integer that is shifted
by the number of decimals as a power of 2. For example:

Bits Integer Fixed-point Factor
0010 1110 = 46 = 2.875 ×24

are equivalent. Addition therefore works correctly for both representations.

Bits Integer Fixed-point
0010 1110 46 2.875
0010 1010 42 2.625 +
0101 1000 88 5.5

However, multiplication gives a different result in both representations. This is
precisely because of the shift by the power of 2.

Bits Integer Fixed-point reality F-P expectation
0010 1110 46 2.875
0010 1010 42 2.625 ×

0111 1000 1100 1932 120.75 = 7.546875× 24 7.546875

After multiplication, the value contains an additional factor of 24. This may
seem problematic, but we can mitigate this by paying careful attention to where we
exactly perform these multiplications. It is impossible to perform multiplications in
the encrypted format, as our commitment scheme is only additively homomorphic.
Particularly in the L2-norm proof, we only perform multiplication in Zp once.
Specifically, when we commit to the square of x, we perform x ·x for each parameter.
The squares are then summed to compute the squared L2-norm of the update.
Therefore, the squared L2-norm of the update is shifted by 2m where m is the
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number of decimals in the fixed-point encoding. We can overcome this issue by also
shifting the range R by 2m. Concretely, this means that instead of providing the
L2-norm range proof for the range [0, R], but for the range [0, 2mR]

5.5.2 Arbitrary Ranges

Supporting arbitrary ranges improves the usability of the protocol and provides a
clear example of the aforementioned efficiency that the L2-norm has in comparison
to the L∞-norm. In the previous construction of the protocol, the Bulletproof range
proofs that are used can prove that a value lies within a range [0, 2n]. However, it
might be the case that additional flexibility is required, beyond bounds that are
a power of 2. As shown in Chapter 4, the norm bound could affect accuracy if
chosen imprecisely. Camenisch et al. [29], show how to construct a range proof for
an arbitrary range [A,B], from two range proofs that work with ranges of the form
[0, u`] for some integers u, ` > 0, which is the case for the Bulletproofs.

We can use this construction in our protocol to enforce arbitrary norm bounds. In
the case of the L∞-norm, enforcing arbitrary ranges requires a significant additional
overhead. This is because for every parameter, we need to create and verify an extra
range proof, which adds a factor of O(n) to the protocol where n is the number
of parameters. Non-asymptotically speaking, the per-parameter range proofs take
up a large part of the computation time, so doubling this factor would contribute
significantly to the total overhead.
In contrast, for the L2-norm proof, we only need to require a single extra range

proof on the squared L2-norm commitment. Because we only add a constant number
of range proofs, specifically one, the additional complexity of this is negligible.

5.5.3 Selecting a Norm Bound

In our secure aggregation protocol we incorporate norm bounding to contain the
impact of malicious inputs. However, the norm bound must be chosen carefully so
that it defends against model poisoning attacks while not harming global accuracy.
In Chapter 4, we look at the implication of the norm bound on model accuracy and
effectiveness of defending against the attacks. Additionally, from the analysis in
Section 4.6.4 we provide a technique to find a suitable norm bound by simulating a
typical client given the public training parameters. In this section, we show how the
server can apply this technique in our protocol under secure aggregation to select
a suitable norm bound. We suggest two methods for selecting the bound: Client
simulation and Voting.

Client Simulation: The server performs several iterations of model training offline,
using the exact training configuration as used in the network. The server uses
the output of these simulations as the distribution of client updates to select the
norm bound with, following the description in Section 4.6.4. For this method, the
server needs to have access to some training data for the task. This is a reasonable
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assumption, because training data is often already used in federated learning by
the server to calibrate the hyperparameters used in the machine learning training
process.

Voting: The server initiates a voting round in which it selects a group of clients
that create a regular update on the current model. The clients then calculate the
statistic of their update, either the L∞-norm or the L2-norm, and engages in a
secure voting protocol. The clients cast a vote on a bin in a range of bins, each bin
representing a discrete interval with the center representing a value for the norm
bound. Given the votes on the bins and α, the maximum fraction of adversarial
clients in the network, the server ignores the α fraction of votes that were cast in
the highest intervals. This is because the adversary could attempt to influence the
norm bound selection process by voting for arbitrarily high intervals. The rest of
the votes represent a distribution of client update sizes, of which the server can pick
its norm bound as described in Section 4.6.4.

Both methods are suitable under different conditions: Voting requires the execution
of an additional secure voting round, which has additional communication overhead.
Conversely, for Client Simulation, the availability of training data that accurately
represents the data distributions at the clients is required. Additionally, as update
sizes tend to decrease with model convergence, both procedures can be applied
repeatedly during the training process to re-calibrate to select the norm bound that
is fitting for the period.

5.6 Optimizing for Scalability

The previously described protocol introduces significant computation and bandwidth
overhead to ensure robustness against model poisoning attacks. In absolute terms, the
computational overhead is significant because of the per-parameter zero-knowledge
range proofs. Additionally, the costs of the protocol scale roughly linearly in the
number of parameters, as shown in Table 5.1. This extra overhead is unworkable for
federated learning and prevents the protocol from being used in practice because
the costs of the protocol become unmanageable for a number of parameters that is
reasonable in deep learning models. We hence pose the following research question:

How can the overhead of the protocol be reduced to support deep-
learning models in practice?

One can take two paths to attempt to answer this question. The first direction
is to work on better optimized and efficient cryptographic constructions for secure
aggregation and zero-knowledge proofs. The second direction is to work on reducing
overhead by relying on protocol optimizations and compression techniques. In
this work, we take the second direction and explore two classes of optimizations:
Compression techniques from machine learning and protocol improvements, which
we now further discuss.
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Complexity
Bandwidth (per client)
Upload Commitments O(D)
Upload Range Proofs O(log(D) log(n))
Upload Rand Proofs O(D)
Download Model O(D)

Client computation
Range Proofs O(Dn)
Rand Proofs O(D)
Training O(D)?
Server computation
Range Proofs O(Dnk)
Rand Proofs O(Dk)
Aggregation O(Dk)
Discrete Log O(D)

Table 5.1: Asymptotic complexity of our protocol in terms of bandwidth, client com-
putation, and server computation, expressed in the number of parameters
D, number of bits n in range [0, 2n], and number of clients k.

The first class of optimizations are focused on reducing the amount of information
required to be transmitted in the model updates. For instance, by lowering the
number of parameters necessary for the task, the number of cryptographic operations
we have to execute is directly reduced. Much work in this direction exists, coming
from the machine learning field. However, applying optimizations from machine
learning is highly nontrivial because of two reasons. First, optimizations have to be
already applicable at training time. For instance, model compression techniques that
are applied after training, such as weight pruning [56, 92] and model distillation [60]
are not useful for our setting. Second, compatibility with our protocol can be an
issue due to the use of secure aggregation and the norm bounding that we want to
enforce on top of the updates. Optimizations from machine learning must therefore
be compatible with secure aggregation and preserve the meaningfulness of the L∞-
or L2-norm bound.
The second class of optimizations attempts to reduce the costs of the protocol

itself, for instance, by reducing the number of zero-knowledge proofs required per
client. We now discuss the optimizations that we use in our protocol.

5.6.1 Probabilistic Quantization

A first optimization that reduces the amount of information required per parameter
is probabilistic quantization. Probabilistic quantization has been shown to be a
particularly efficient method to compress parameters in client updates from many
clients [68]. Parameters are reduced to an encoding in a lower amount of bits

84



5.6 Optimizing for Scalability

using a probabilistic transformation. For a more detailed description, we refer to
Section 3.3.1.
We can apply probabilistic quantization for the compression of both the model

uploads from the clients to the server and the model downloads from the server to
the clients. However, from theory we know that probabilistic quantization for model
downloads is probably not feasible as it will impact model accuracy [27]. This is
because we need to average over several updates in order for the compressed value
to be a good estimator for the original value.

In our protocol, using probabilistic quantization to reduce the size of the parameters
will not bring any gain in terms of bandwidth. This is because the parameters are
encrypted before being uploaded to the server; hence, they are represented as exactly
one group element, regardless of encoding.
Probabilistic quantization does give us an improvement for the range proofs in

terms of computation time and bandwidth. Recall that the computational complexity
to generate and verify range proofs is linear in the number of bits in the range.
Additionally, for bandwidth the proof size grows logarithmically in the number of
bits in the range due to the recursive inner-product argument that Bulletproofs use.
With probabilistic quantization, we can reduce the number of bits required to express
the range, which linearly reduces proof generation time and proof verification, and
logarithmically reduces the amount of bandwidth required. In addition to overhead
reduction, probabilistic quantization may also improve accuracy in comparison to
deterministic quantization. [74].

5.6.2 Federated Dropout

Federated dropout can be used to reduce the number of parameters that are trans-
ferred in the model, while simultaneously improving the generalization effect of the
model by providing a kind of weight regularization. The server picks a dropout rate
r with 0 < r < 1, which is a fraction of weights it will randomly withhold for each
client. As a consequence, every client receives a different sub-model of the main
global model. After training, the server aggregates the weights of the clients back
into the global model.
Concretely, federated dropout provides a reduction of rD parameters in each

model. As every component in the protocol is dependent on D, this results in
significant reduction in overhead for computation and bandwidth. Only the Discrete
Log operation must still be performed for D parameters, as the global model still
has D parameters.

While federated dropout can cause a significant reduction in overhead for all the
components by reducing the number of parameters that sent to each client, the
impact is limited because a dropout rate r of less than 0.5 is unrealistic in practice
for most models and tasks. At this extreme, a dropout rate of 0.5 would cause a 2x
reduction in overhead.
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5.6.3 Random Mask

A third improvement to reduce the size of the model update is random mask. In
random mask, the clients do local training by only optimizing on the weights that are
contained in a random mask unique per client, and only transmit these parameters
to the server. The random mask is generated using a random seed that is agreed
upon between the server and each client. It has been shown that a random mask
containing only 12.5% of the original number of parameters does not significantly
reduce accuracy [68]. A more detailed explanation of how random mask works can
be found in Section 3.3.2.

However, there does exist a security consideration with this optimization method.
Namely, the seed for the random mask must be generated in such a way that it is truly
random, verifiable by the server and client. Otherwise, the server could manipulate
the client into being the only contributor for a subset of model parameters, potentially
revealing private information. Conversely, an adversary could freely choose which
parameters it wants to contribute to, whereas the benign clients contribute at
random, giving the adversary a bigger influence. In order to overcome this problem,
the server and client agree upon a random seed using Diffie-Hellman key agreement.

5.6.4 Random Subspace Learning

A fourth optimization that reduces the amount of information transmitted in the
model update is random subspace learning. This technique, initially introduced in the
context of machine learning to understand the hardness of machine learning tasks [75],
is useful to our protocol. This is because it reduces the number of parameters
required for a model, while still preserving the L2-norm in the transformation,
ensuring compatibility with our L2-norm bound restriction. Hence, we explore this
technique further and are the first to do so in the context of federated learning.
We now explain how random subspace learning can be applied specifically in our
protocol, for a full explanation of random subspace learning we refer the reader to
Section 3.3.3.

In random subspace learning, the model is trained in a random subspace θd that
has a lower dimension d than the original model’s dimension D. This reduces the
number of parameters to be encrypted from D to d. The random subspace θd is
projected onto the original model space θD using an orthonormal projection matrix
P ∈ RD×d:

θD = θD0 + Pθd

This improvement is compatible with the L2-norm bound because the orthonormal
transformation preserves the L2-norm. During training, θD0 and P are treated as
constants, and optimizations are done on θd. Therefore, only θd has to be exchanged
between the client and server in each round, resulting in an improvement in the
number of parameters of a factor d

D
.

Empirical data from the original authors has shown that for some tasks and model
architectures a reduction of a factor 100 is possible [75]. However, there exists
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a tradeoff between the reduction factor d
D

and accuracy. The authors deem an
accuracy of 90% of the original baseline acceptable, which may not always be the
case. Therefore, while the optimization seems very promising for federated learning,
we must carefully inspect the effect of random subspace training on accuracy.

5.6.5 Probabilistic Checking

An improvement to the protocol itself is probabilistic checking. In the current
protocol, clients generate a range proof for every parameter, which is expensive in
terms of computation. To reduce the amount of range proofs that are required, the
server may choose to check range proofs probabilistically. At first sight, it may seem
that this reduces security significantly. However, it turns out that the probability
for a client to cheat is very low.
To implement probabilistic checking, the protocol is changed so that the clients

first submit the vector of commitments to all the parameters. Then, the server
chooses selects a fraction of parameters at random that it wants to receive a range
proof for. Only after this, the clients respond with range proofs for these specific
parameters. The selection of the parameters can be made efficiently by sending a
random seed that is used as input to a PRG to deterministically generate the indices
of the parameters in the vector.
To see why this works, assume the server chooses a fraction p of parameters

uniformly at random. After receiving the request for the range proofs, the clients
have to send the range proofs for the parameters that were sent in the commitments,
due to the binding property of the commitments. The only way of cheating is to
hope that the server does not choose the specific parameter that is out of bounds.
For single parameter, this probability is 1

p
. However, in order to perform a reasonable

model poisoning attack, the adversary has to use a significant portion of the weights.
The probability of detecting a cheating client follows a hypergeometric distribution.

This implies that even with a small amount of malicious parameter, the probability
of detecting the client quickly approaches 1, as shown in Figure 5.4.
Unfortunately, this optimization is only applicable for the L∞-norm bound. For

the L2-norm bound, the adversary can compromise the computation with only a
single parameter that is used to overflow the L2-norm calculation. The adversary
can then submit a large update that still satisfies the L2-norm, due to the arithmetic
overflow in the group. Probabilistic checking therefore does not work, because the
attacker can perform this attack with a detection rate of 1

p
.

5.6.6 Optimistic starting

We now discuss a second optimization that works at the protocol level on the server-
side. It is related to when norm bound proof generation and verification are being
done, which take up most of the time in the protocol. The optimization is based
on the insight that when the clients generate the norm bound proofs, the server is
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Figure 5.4: Example of the detection probability

waiting idly. Conversely, the clients are waiting for the server to verify the norm
bound proofs to start the next round.
We can improve the time per round drastically by executing both operations in

parallel. The server, upon receiving the update, optimistically attempts to decrypt
the update and starts the next round. Only after this, the server verifies the norm
bound proofs and aborts the new round if there are any inconsistencies.
This optimization allows the proof generation and verification to be done in

parallel and does not compromise security. The only thing an adversary could gain
is that a set of clients starts training the next round, which has to be discarded
in addition to the previous round, which already had to be discarded without this
optimization. However, as explained in Section 5.1.1, this Denial-of-Service attack is
detectable and we therefore deem it out of scope of our threat model.
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In this chapter, we discuss the prototype implementation of our Secure Federated
Learning Protocol described in Chapter 5.

This implementation is an extension of the implementation by Lei et al. [74]. We
thus only describe the general architecture and the additions that were made. For
a detailed description of the implementation of unaltered components such as the
Foreign Function Interface or the Baby-Step-Giant-Step algorithm, we refer to their
work [74].

6.1 Overview

The Secure Federated Learning Framework is implemented to perform federated
learning training across multiple nodes, while aggregating updates using secure
aggregation and enforcing norm bounds using zero-knowledge proofs. In this section,
we give an overview of the framework.

The system consists of three components: The server, the client, and the cryp-
tographic library. The server handles the coordination of the federated learning
protocol and communicates with the clients. The client implements local training.
The cryptographic library implements the cryptographic operations used for secure
aggregation and zero-knowledge proofs on which both the server and client rely.
The server and the client are built using Python, due to its ability for fast

prototyping and its wide adoption in the machine learning community through
many machine learning frameworks. The machine learning framework of choice is
Tensorflow [7], programmed through the Keras interface [32]. The advantage of
Keras is that in theory two backends in addition to Tensorflow are also supported,
namely CNTK and Theano. Furthermore, Keras allows for the serialization of model
structure and parameters, required for transferring the model between the server
and the client.
The server and client communicate through the Socket.IO protocol [91] over the

network. Furthermore, they interact with a local instance of the cryptographic
library using a Foreign Function Interface. An FFI allows programs compiled from
one language to call functions from a program written in another language. The
cryptographic library generates and verifies the cryptographic objects needed for
secure aggregation and the zero-knowledge proofs. These objects are serialized
through the FFI, sent by the client to the server over the network, and then
deserialized by the server’s FFI with the cryptographic library. A schematic overview
is shown in Figure 6.1.
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Figure 6.1: High-level architecture of the system.

Message flow The clients and server communicate through a series of asynchronous
protocol messages which roughly correspond to the protocol steps, shown in Figure 6.2.
We now describe this flow of protocol messages in the framework. For a full
explanation of the protocol, we refer the reader to Section 5.2.
First, the clients establish a connection with the server and register us-

ing client_register to participate in the federated learning setup. Then,
the server transfers the machine learning and security configurations using
transfer_model_config and transfer_crypto_config, respectively, as well as
the model definition and the random initialization of the untrainable weights using
transfer_model. Because the number of untrainable weights can be very large, such
as in random subspace machine learning, the implementation supports the transfer
of a seed to generate the random initialization instead, using transfer_seed.

When the server has received enough client registrations as defined by the config-
uration, it starts a training round by transferring the current global model weights
start_training. Note that in this step, only the trainable weights are transmitted.
After a client is finished training, they send the commitments to the server with the
training training_finished message. For probabilistic checking of range proofs,
the server then selects the commitments it wants to see a range proofs for with
select_commitments. Finally, the client returns the requested range proofs in the
transfer_range_proofs step.

6.2 Aggregation Protocol

After having established a general overview of the framework’s structure, we now
discuss the different kinds of aggregation that the framework supports, and how this
is implemented. The most important feature of the framework is the support for
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Figure 6.2: Protocol message flow.

secure aggregation with norm bounding. In addition to this, the framework supports
other aggregation protocols in order to compare the aggregation protocols. This
functionality is captured in a set of aggregators. The aggregators vary in level of
security and performance and operate as interchangeable modules in the system that
can be easily changed without having to change the underlying federated learning
system. The following aggregators are supported:

1. plain_aggregator This component does not use any encryption or robustness
and sends the updates in plain text to the server. This aggregator serves as
the baseline for benchmarks.

2. secure_aggregator This component aggregates using only the secure aggre-
gation part of the protocol, without any robustness proofs.

3. range_aggregator In addition to the functionality of secure_aggregator,
this component adds parameter-wise range proofs and randomness proofs to
prove the L∞-norm bound.

4. l2_aggregator In addition to the functionality of secure_aggregator, this
component adds the robustness proofs required for the L2-norm bound.
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The various aggregators can be used interchangeably, depending on the specifica-
tion in a configuration file. This allows for easy comparison and benchmarking of
the different aggregation methods.

6.3 Cryptographic Library

The aforementioned aggregators rely heavily on cryptographic operations for their
functionality and security guarantees. The cryptographic functionality is imple-
mented in a separate library, for efficiency and maintainability reasons. The cryp-
tographic library handles all of the operations required for secure aggregation and
zero-knowledge proof generation and verification. We begin this section by describing
the implementation of the cryptographic primitives, and then go on to discuss the
implementation of the zero-knowledge range and squared randomness proofs.
We use the algebraic structure of an elliptic curve over a finite field as the

instantiation of the group G for our cryptographic operations. Concretely, we use
the standardized curve Curve25519 which is specifically designed to be fast and
immune against timing attacks and provides 128 bits of security. Furthermore, the
Bulletproofs library [37] also uses this curve, making compatibility easier.
The architecture of the cryptographic library is based on the primitives of the

curve25519-dalek library [64]. The library represents elements from the group G
with prime order p as 256-bit RistrettoPoint structures. Additionally, elements
in Zp are represented as 256-bit Scalar structures. For the generators g and h, we
follow the standards of the library to ensure they are chosen safely. Specifically, g is
set as the base point of Curve25519, i.e. for x = 9, and h is set to the SHA3_512 hash
of g. We assume that the relation between g and h is not known, which is imperative
for security. For this we need to believe the SHA3_512 behaves as a random oracle.

Number representation The cryptographic library performs the conversion pro-
cess from floating-point values to fixed-point and then to Scalar values. The size
of the fixed-point representation can be configured using configuration parameters
ρ and κ, representing the total number of bits and the number of fractional bits
in the representation, respectively. After converting the floating-point numbers
to fixed-point using deterministic or probabilistic quantization, the ρ-bit numbers
have to be converted to 256-bit Scalars. However, we have to ensure that the
representation of the numbers in Scalar form correspond to the correct fixed-point
values, so that operations done on Scalar values correctly translate. We now explain
how this conversion process works and how it ensures the correct representation.

As ρ� 256, the positive fixed-point numbers can be embedded directly into the
least-significant bits of the 256-bit Scalar. However, this does not work for negative
values, as the most significant bit in the fixed-point representation that stands for
the sign does not translate to the most significant bit in the Scalar representation.
Concretely, this results in the problem that the inverse −p of a number p is not
the same in the Scalar representation. In order to solve this, we first convert
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the negative number −p to its positive representation p, convert it to its Scalar
representation P and then negate the Scalar, −P .

6.3.1 Zero-Knowledge Range Proof

The implementation of the Bulletproof range proofs is done using the Bulletproofs
library by the Dalek Cryptography Developers [37]. This library also relies on the
same primitives from the curve25519-dalek library. The library supports fast range
proof generation and verification using the AVX2 instruction set [90].

Flexible ranges A limitation of the library is that only range proofs for 8-, 16- and
32-bit ranges are supported. Because the bounds that we would like to enforce are
more subtle than bytes, we want to construct a range proof for a more flexible range.
To achieve this, there are two approaches, shifting the decimal point or adding extra
range proofs.
A first solution is to adapt the fixed-point configuration to this limitation, by

shifting the decimal point in the fixed-point representation such that the size is
exactly one of the three supported ranges. Consider, for example, a fixed-point
representation of 12 bits with 10 fractional bits. If we require a norm bound of 4, we
can shift the decimal point up 4 bits, resulting in a fixed-point representation of 16
bits with 14 fractional bits. There are two issues with this solution. First, it forces
us to increase the number of bits required per parameter, which can incur additional
overhead. Second, the solution still only supports norm bounds that are a power of
two as visualized in Figure 6.3, which may not be flexible enough for our purpose.

2−2 2−1 20 21 22

0 0.25 0.5 1 2 4
Too wide

Figure 6.3: Visualization of the norm bounds that are powers of two.

Therefore, the second solution is based on adding an additional range proof to
enforce an arbitrary range [A,B], as explained in Section 5.5.2. The implementation
for this solution is different for both norm bounds. For the L∞-norm bound, every
parameter-wise range proof gets a second range proof. This has significant cost, as
the range proofs are already a large part of the protocol overhead. For the L2-norm
bound, arbitrary ranges are much more efficient to implement. Only the range of the
squared L2-norm requires an additional proof, which is only a small and constant
additional factor.
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6.3.2 Zero-Knowledge Squared Randomness Proof

We implement the zero-knowledge proofs to prove the randomness and the square
relation following the specification given in Section 5.4.3. The protocols are imple-
mented using Merlin transcripts [36]. Merlin abstracts the Fiat-Shamir heuristic
away so that non-interactive proofs can be implemented as if they were interactive
proofs, which improves readability and reduces the risk of errors. The generation
and verification of the squared randomness proofs are implemented as follows.
The create_squarerandproof FFI function takes a vector of float32 input

values and two vectors of Scalar blinding values as input, to generate the El-
Gamal commitments and the Pedersen commitments to the square. The func-
tion returns a vector of squared randomness proof transcripts and a vector of
SquareRandProofCommitment, which each contain a tuple with an ElGamal com-
mitment and a Pedersen commitment to the square. The verify_squarerandproof
FFI function takes the vector of squared randomness proofs and the vector of
commitments and returns a single boolean indicating whether the proofs are valid.

6.3.3 L2-norm proof

As explained in Section 5.4.2 L2-norm proof has two components that perform
operations the same set of commitments. Implementing each component separately
requires multiple exchanges between Python and the cryptographic library through
the FFI, resulting in additional overhead because of the serialization and deserial-
ization of the parameters. Moreover, having multiple interactions between the two
components increases the complexity of the code. Thus, to reduce the overhead and
to aid the simplicity of the Foreign Function Interface between the Python and the
Rust code, we created two helper functions to perform the additional steps required
to generate and verify the L2-norm bound proof. These helper functions are called
in addition to the parameter-wise range proofs.

Similar to create_squarerandproof, the create_l2proof FFI function takes a
vector of float32 input values and two vectors of Scalar blinding values as input,
as well as the required L2-norm. Additionally, it requires a parameter to indicate
how many cores the range proof generation should be split over. The function then
computes the squared randomness proof, adds the squared commitments together
to get the squared L2-norm, and computes range proof for the squared L2-norm.
It returns the commitments, the squared randomness proofs, and the single range
proof of the squared L2-norm. The verify_l2proof FFI function takes the squared
randomness proofs, the commitments, and the single range proof for the squared
L2-norm as input. It then verifies the squared randomness proofs, computes the
squared L2-norm from the commitments, and verifies that the range proof is correct
and is for the same squared L2-norm commitment.

These two helper functions, in combination with the parameter-wise range proofs,
are sufficient to generate and verify the L2-norm bound proofs.
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In this chapter, we evaluate the Secure Federated Learning Framework. The objective
of the evaluation is to answer the following questions: (1) What is the overhead
of the secure federated learning protocol in terms of computation, bandwidth and
accuracy loss, (2) how much can the proposed optimizations reduce this overhead,
and (3) can we apply the protocol in practice?
This chapter is structured as follows: We first define the experimental setup in

which of the evaluation After that, we look at the performance overhead of the
cryptographic operations. Finally, we show an end-to-end benchmark of the full
system, highlighting the overhead reduction of the optimizations.

7.1 Experimental Setup

In this section, we describe the methodology and the configurations used in the
experiments.

7.1.1 Methodology

The evaluation quantifies overhead of the protocol for the following metrics:

1. Cryptographic computation time: The time required to perform the
cryptographic operations

2. Bandwidth: The amount of data transmitted by the protocol.

3. End-to-end time: The time it takes to do a full run of the end-to-end system.

4. Accuracy: The accuracy of a run of the end-to-end system.

We perform microbenchmarks of the cryptographic library using the cargo bench
module [1]. For each statistic, we take the average of 40 measurements after ’warming
up’ the processor by doing one mock execution.

7.1.2 Setup

The micro and end-to-end benchmarks are performed on different setups.

Microbenchmarks: We use a single AWS EC2 c5d.4xlarge instance. The machine
contains 32 GB of memory and 16 cores of a first-generation Intel Xeon Platinum
8000 processor that supports AVX2 instructions.
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End-to-End benchmarks: We use five AWS EC2 c5d.9xlarge instances. The
machines each contain 64 GB of memory and 32 cores of a first-generation Intel
Xeon Platinum 8000 processor that has support for AVX2 instructions. The server
occupies one instance, while the clients are evenly distributed over the other four
instances. The server and clients communicate inside an AWS Virtual Private Cloud.

7.1.3 End-to-End Configuration

We evaluate the end-to-end system under several tasks, models, and robustness
configurations. Furthermore, we compare the performance of the protocol for the
MNIST and CIFAR-10 tasks. For both tasks, we use specific a Convolutional Neural
Network (CNN) of a size that is suitable for the task. Both CNNs follow the same
architecture: two convolutional layers, a 2 by 2 max-pooling operation, and two fully
connected layers.
For the MNIST task, we use a model with 19166 parameters. The convolutional

layers consist of 8 and 4 channels, respectively, and the two fully connected layers
contain 576 and 32 parameters, respectively. For the CIFAR-10 task, we use the
LeNet5 CNN of 62006 parameters. This network contains an additional max-pooling
layer after the first convolutional layer of 6 filters. Then, a convolutional layer with
16 filters is applied, followed by fully connected layers of 120 and 84 parameters.

7.2 Cryptography

To find out the computational overhead of the protocol, we evaluate the computation
time of the individual cryptographic components in the protocol. We evaluate
the computation time of two components of the library: the square randomness
proof and the full norm bound proof, of which the square randomness proof is a
sub-component.

7.2.1 Zero-Knowledge Square Randomness Proof

We measure the performance of the square randomness proof and compare it with
the regular randomness proof. The randomness proof is used in the protocol to
ensure that the randomness of the two components in the ElGamal commitments is
the same. The square randomness proof is an extension of the randomness proof,
which additionally proves that one commitment contains the square of another
commitment, used as a component in the L2-norm bound proof.

The computation time for the randomness proofs grows linearly with the number of
parameters, as shown in Figure 7.1. The 32-bit results in Figure 7.1 are representative
for other parameter bit-lengths, because of the immunity of Curve25519 against
timing-attacks [74]. For 215 parameters, the latency to generate the randomness poof
is 2.10 seconds whereas the cost for the squared randomness proof is 3.40 seconds
(1.62x). The cost to verify the randomness proofs shows a similar increase: 1.04
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Figure 7.1: Performance comparisons of the squared randomness proof and the
regular randomness proof under 32-bit representation.

seconds for the randomness proof and 1.73 seconds for the square randomness proof
(1.67x). We attribute this to the fact that the proof of square relation protocol
contains one additional constraint in comparison to the original randomness protocol,
which already contains two. The prover and verifier are required to perform additional
group operations to create and verify the extra Pedersen commitment, resulting in
this extra computation overhead.

The additional overhead for the square randomness proof in comparison to the
randomness proof is acceptable because the computation time of the randomness
proof is only a small factor in the total norm bound proof computation time. Hence,
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we expect that this additional constant factor is relatively small with regards to the
full norm bound protocol, which we evaluate in the next section.

7.2.2 Zero-Knowledge Norm Bound Proofs

We now evaluate at the performance of both the L∞- and the L2-norm bounds to
quantify the computational overhead of the most computationally intensive parts
of the protocol. The proofs are made up of different components, such as the
per-parameter range proofs, randomness proofs, and optionally the L2-norm range
proof, as discuss in Section 5.4.2. We first show the comparison of both full proofs,
and then highlight some advantages of the L2-norm proof in terms of efficiency and
flexibility over the L∞-norm proof.
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Figure 7.2: Performance comparisons of the full proofs for L2- and L∞-norm con-
straints under 32-bit representation.

Figure 7.2 shows that the time required to create and verify the norm bound
proofs grow linearly in the number of parameters, and logarithmically in the number
of bits in the proof range for the parameters. For 215 parameters and a 32-bit bound,
generating an L∞-norm bound proof takes 35.24 seconds and 36.56 seconds for an
L2-norm bound proof (1.04x). For proof verification for 215 and the same 32-bit
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bound, L∞-norm bound proof takes 9.49 seconds and the L2-norm bound proof
takes 10.18 seconds (1.08x). The small additional overhead of the L2-norm proof
is in line with our expectation from the previous section: The squared randomness
proof in the L2-norm proof adds some overhead but turns out to be a very small
factor (1.04x and 1.08x) in the actual L2-norm proof.
The extra overhead of the L2-norm bound is acceptable, because of two reasons.

First, as opposed to the L∞-norm bound, the L2-norm bound is compatible with
other optimization techniques such as random subspace learning, which could save
more overhead than the additional cost of the L2-norm in comparison to the L∞-
norm. Second, the L2-norm proof allows us to be more flexible in the specific bound
that we can enforce, which we discuss in the next paragraph.

Arbitrary ranges Because the L2-norm bound itself is enforced by a single range
proof on the sum of the squared commitments, we can choose to enforce a more
costly, flexible bound for this single commitment. As explained in Section 5.5.2, the
current Bulletproof implementation only supports proof ranges of 8, 16, and 32 bits.
To bridge the gap to proof an arbitrary range [a, b], an additional range proof is
required. For both norms, the extra overhead incurred is different, because the L∞-
norm bound requires an additional range proof per parameter, whereas the L2-norm
bound only requires one additional range proof for the sum of squares commitment.
Figure 7.3 shows that for 215 parameters the generation of the L∞-norm bound for
an arbitrary range takes 68.37 seconds compared to 36.57 seconds for the L2-norm
bound (1.87x). Conversely, for verification the L∞-norm bound takes 17.93 seconds
compared to 10.18 seconds for the L2-norm bound (1.76x), which is in line with our
expectation.

7.3 Message Size

To answer the question of bandwidth overhead, we analytically look at the overhead
of the size of the messages. We count the message size overhead as the number of
bytes taken up by the elements sent between the server and the clients. Given the
number of parameters D, we look at the message size overhead per client and per
round.

Download Clients download the parameters of the model from the server in 32-bit
floating-point format. Random subspace learning reduces the number of parameters
downloaded by the clients, so given an intrinsic dimension d, the message size
overhead of the model download bandwidth is reduced to 4d bytes.

Upload Upload message size overhead is a more interesting metric to look at, for
two reasons. First, due to the use of cryptographic constructions, the uploading
of the model update from the clients to the server is much larger than the model
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Figure 7.3: Comparison of L2- and L∞-norm bound proofs for an arbitrary range.

download. Second, client devices in a wide area network are often more constrained
in terms of upload speed than of download speed.
We first analyze the message size for the individual components of which client

update consist, and then show the totals for both norm bounds. Every Scalar and
group element used in the cryptographic constructions consist of 32 bytes. A client
update can consist of the following components, depending on the norm bound:

1. Commitment vector: The update is encrypted using ElGamal commitments,
which each consist of two group elements, resulting in 64D bytes.

2. Range proofs: The per-parameter range proofs for a range n can be batched
together to only take 2(log2(n) + log2(next_pow2(D)) + 4 group elements and
4 Scalars of 32 bytes, where next_pow2 is rounds up the argument as the
next power of 2. However, to distribute the heavy generation and verification
operations over multiple CPU cores to execute these operations in parallel, we
partition the vector into p segments. The total message size overhead then
becomes 32p(log2(n) + log2(next_pow2(D

p
)) + 9) bytes.
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3. Randomness proofs: From Section 5.4.3, we know that per-parameter
randomness proof to prove that the randomness in the ElGamal commitment
tuple matches takes 2 Scalars and 2 group elements, totaling 128D bytes.

4. Squared commitment vector: For the L2-norm bound proof, an additional
vector of commitments to the squared parameters is required to compute the L2-
norm. These commitment are Pedersen commitments, which are represented
by a single group element, as opposed to the ElGamal commitment vector.
Therefore, they take up only 32D bytes.

5. Square randomness proofs: The squared randomness proofs, used to proof
the square relation for the L2-norm bound, are an extension of the randomness
proofs and contain one extra Scalar and group element, resulting in 192D
bytes.

6. Squared L2-norm range proof: This range proof ensures that the L2-norm
of the commitment vector is within the given range n, and takes 32(log2(n)+9)
bytes.

Norm bound Message size overhead

L∞ (1., 2., 3.) 32(6D + p(log2(n) + log2(next_pow2(D
p

)) + 9))

L2 (1., 4., 5., 6.) 32(9D + p(log2(n) + log2(next_pow2(D
p

)) + 9) + log2(n) + 9)

Table 7.1: Overview of messages for both norm bounds, given the number of param-
eters D and the proving range n.

The total messages sizes for both norms are shown in Table 7.1, which reveal
that the upload message overhead is independent of the number of bits in the
parameter encoding. Only the size of the range in the range proofs is logarithmically
in relation to the message overhead, because of the inner product argument used in
the Bulletproof range proofs. The L∞-norm bound proof consists of the commitment
vector, the range proofs, and the randomness proofs. The L2-norm bound proof
consists of the commitment and squared commitment vector, the range proofs and
the Squared L2-norm range proof. The display of the relation of the message size to
the number of parameters in Figure 7.4 shows that for large vectors, the commitments
and the randomness proofs contribute most to the messages size. For instance, 215

parameters under the L∞-norm bound has a message size of approximately 6.3
Megabytes, of which the commitments and the randomness proofs take up 99.3%.
Nevertheless, we deem the message size overhead of our protocol acceptable

because, while the increase in message size is significant for our protocol, in absolute
terms the upload of several megabytes of data is not problematic. Especially because
in federated learning, client devices are typically only selected when their connection
to the internet is not limited [81]. Additionally, the optimizations discussed in
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Figure 7.4: Message overhead per round for both norm bounds in the number of
parameters D for a 32-bit range (n) and 64 range proof vector partitions
(p)

Section 5.6 help reduce the message size overhead. For instance, random subspace
learning reduces the number of effective parameters, directly corresponding to a
lower message size overhead.

7.4 End-to-End Evaluation

To quantify the effects of optimizations on the protocol and to see if it is applicable
for deep-learning in practice, we perform a full deployment of the prototype imple-
mentation of the protocol. We first look at the effect of the optimizations on the
protocol. After that, we compare the results with an insecure, plaintext baseline.

7.4.1 Optimizations

We compare the optimized system with a baseline implementation with the norm
bounds. For the baseline implementation, we use a (16,8)-fixed-point representation,
similar to [74]. We use different optimizations for both norm bounds, because some
optimizations are only applicable for a specific norm bound.

We evaluate the system under both norm bounds with the following optimizations:

Optimized L∞-norm We apply probabilistic clipping with a rate of 10%,
meaning the server will only request 10% of the range proofs after receiving
the commitments.

Optimized L2-norm We apply random subspace machine learning to reduce
the amount of parameters that are trained in each round. For MNIST, we
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choose an intrinsic dimension of 4000 which gives us a 4.79x compared to the
original amount of parameters. For the CIFAR-10 task, we used an intrinsic
dimension of 10000, resulting in a 6.20x parameter reduction.

For both norm bounds, we apply probabilistic quantization to afford to reduce the
number of bits per parameter to an (8,7)-fixed-point number representation. We
additionally applied optimistic starting of the next round on the server-side.

L∞-norm bound Table 7.2 shows that the optimizations provide a significant
speedup for both norm bounds and tasks. For the CIFAR-10 task with 62006
parameters, the time per round is reduced from 660 seconds to 293 seconds (2.25x)
for the optimized L∞-norm bound with probabilistic clipping and optimistic starting.
Moreover, Figure 7.6 shows that the use of the (8,7)-fixed-point representation
does not reduce accuracy significantly for the L∞-norm, which we attribute to the
use of probabilistic quantization. In the MNIST task, the optimized L∞-norm
actually improves accuracy while a 2x smaller encoding is used. We attribute this
the probabilistic quantization as well, which we further explore later in this section.

L2-norm bound Coming back to the CIFAR-10 task, the L2-norm bound opti-
mization provides an even larger reduction than the L∞-norm bound, from 802
seconds to 120 seconds (6.8x), as shown in Table 7.2. The optimized L2-norm bound
with random subspace learning is more than twice as fast as the optimized L∞-norm
bound, even though we saw in the previous section that the cryptographic operations
take more time in the case of the L2-norm. However, this additional speed comes at
a price: in contrast to the L∞-norm bound, the accuracy is slightly lower due to
the limitations caused by the smaller intrinsic dimension from the random subspace
learning, as shown in Figure 7.6. While there is some loss in accuracy, specifically
0.0105 and 0.0306 for the MNIST and CIFAR-10 tasks, respectively, this does not
have to be problematic. On the contrary, the use of random subspace learning can
be seen as a very efficient tuning mechanism to trade a small accuracy loss for a
drastic performance increase by varying the intrinsic dimension.

Probabilistic quantization We attributed the accuracy improvement of the op-
timized norm bounds even though the number of bits per parameter was reduced
to probabilistic quantization. However, we attempt to quantify the effects of prob-
abilistic quantization by performing further experiments where the quantization
is the only changing factor. Results in Figure 7.5 show the performance of the
non-IID MNIST task for various fixed-point quantization methods, as well as a 32-bit
floating-point baseline. The results show that probabilistic quantization to 8-bits
with 7 fractional bits is feasible without reducing accuracy significantly compared to
the baseline. Moreover, we can see that probabilistic quantization works significantly
better than deterministic quantization: probabilistic quantization achieves roughly
the same accuracy with half the amount of information. In our experiments, we only
leave a single bit for the integer part in the fixed representation to leave the most
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space for the fractional part of the weights because machine learning parameter
weights are typically between 0 and 1.
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Figure 7.5: Comparison of quantization configurations. non-IID MNIST dataset,
3383 clients with 30 selected per round.

7.4.2 Plaintext Comparison

What is left is to see if our protocol is applicable in practice. To this end, we compare
our optimized, secure norm bounding protocol with an insecure plaintext baseline.
Table 7.2 shows that it takes 5.60 seconds for a model on MNIST task to train
in plaintext, compared to 86.17 seconds (15x) for the L∞-norm bound and 38.50
seconds (7x) for the L2-norm bound. To train the model to a reasonable accuracy
in 40 rounds, it takes 56 minutes for the L∞ and 26 minutes for the L2-norm,
compared to 4 minutes for the plaintext baseline. The accuracy in Figure 7.6 of
the L∞-norm bound experiment shows only a slight reduction compared to the full
32-bit floating-point run, due to probabilistic quantization. Furthermore, for the
L2-norm we do see a slight reduction because of the use of random subspace learning,
which we use as a tuning knob to trade accuracy for speed, as explained in the
previous section.

For the larger CIFAR-10 model with 62006 parameters the time per round is 7.31
seconds for the plaintext baseline compared to 293.35 seconds (40x) for the L∞-norm
bound and 120.46 seconds (16x) for the L2-norm bound. A full training session of 40
rounds translates to 196 minutes and 80 minutes for the L∞- and L2-norm bounds,
respectively, compared to 5 minutes for the plaintext baseline. The round time of 5
minutes for the large CIFAR-10 CNN of 62006 parameters. Hence, we conclude that
our protocol is applicable in practice for typical models used in deep learning.

Server load The examination of the current protocol bottlenecks shows that there
exists a bottleneck at the server for update aggregation, decryption, and proof
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L∞ L2

Plain Naïve Optimized Naïve Optimized

Accuracy 0.9855 0.9815 0.9828 0.9815 0.9710

Time (s) 5.60 (1x) 278.45 (50x) 86.17 (15x) 335.77 (60x) 38.50 (7x)

(a) MNIST (19166 parameters)

L∞ L2

Plain Naïve Optimized Naïve Optimized

Accuracy 0.5573 0.5612 0.5610 0.5612 0.5306

Time (s) 7.31 (1x) 660.35 (90x) 293.35 (40x) 801.80 (110x) 120.48 (16x)

(b) CIFAR-10 (62006 parameters)

Table 7.2: Final accuracy and time per round for both norm bounds.
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Figure 7.6: Accuracies of the end-to-end evaluation for both tasks and norm bounds.
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verification. The optimistic starting improvement, where the server optimistically
continues with the next round and verifies the proofs of the last round while the
clients are training, mitigates this partly, but not completely. This is because there
still exists some idle time where the server has to wait for the verification of the
previous round to complete before continuing with the next round.

However, we can easily resolve this bottleneck by parallelizing these computations
at the server using horizontal scaling on a cluster. Using optimistic starting, we
only need to ensure that the time for proof verification takes at most the time that
the clients take to train and generate the proofs in a round because these can then
exactly be executed in parallel.
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The increasing occurrence and corresponding unrest of data abuse by companies and
governments show that there is a pressing need for privacy-preserving solutions that
can resolve the tension between data utility and user privacy. Federated Learning is
an emerging machine learning approach that attempts to solve this issue by providing
the means to train machine learning models while keeping data decentralized at the
clients, sharing only small, ephemeral updates specifically crafted for training the
model. However, this new learning paradigm introduces a new set of privacy and
integrity challenges due to its open and decentralized nature, which we must examine
carefully and adequately resolve. As we rely more and more on decisions driven
by machine learning algorithms in our lives, it is of the utmost importance that
these algorithms are fair and trusted. Therefore, before deploying federated learning
in high-stakes, privacy-sensitive applications, we must first deeply understand its
robustness in the presence of adversaries.

This thesis examines the integrity of federated learning and provides a thorough
analysis of the impact of integrity attacks on federated learning. We hope that
this analysis can guide future solutions. This thesis also presents a new protocol
that mitigates the impact of these integrity attacks. Based on insights from our
analysis study, we observe that norm bounding is an effective measure to protect
against these attacks. Norm bounding proves to be an effective defense against
many existing model poisoning attacks under a reasonable federated learning setting.
With this in mind, we design a protocol using a homomorphic commitment scheme
and zero-knowledge proofs to enforce this norm bound on client updates without
compromising privacy, making it compatible with secure aggregation as opposed to
existing defenses. We introduce several optimizations to make the protocol practical
at scale.

Our evaluation shows that the overhead of the protocol grows linearly in the
number of parameters. With our optimizations, we bring the overhead of a baseline
implementation of the protocol from 802 seconds down to 120 seconds per round
(6.82x) for a model 62006 parameters at only a small reduction in accuracy. Hence,
this shows that it is feasible to apply the protocol for training deep-learning models
in practice.
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8.1 Future work

The work in this thesis sheds light on some challenges that we believe are interesting
to pursue in further research. This section briefly highlights some of these challenges
and discusses some ideas for further research in secure and robust federated learning.

• Theoretical guarantees. In this work, we empirically showed that norm
bounding is an effective defense against many existing model poisoning attacks.
However, the work is based on empirical analysis, and we do not have theoretical
guarantees that norm bounding will protect against newly discovered attacks.
To get stronger security guarantees, we must complement empirical defenses
with ones that provide theoretical guarantees. Defenses with theoretical
guarantees provide an upper bound on adversarial success, even when better
attacks are found. A similar development was seen in the field of adversarial
machine learning, where empirical defenses were proposed first, followed by
defenses that provide a theoretical limit on adversary success. However, the
formulation of theoretical defenses in federated learning is more challenging
than in adversarial machine learning, because the threat model is stronger; the
adversary has white-box access to the model during training.

• Cryptographic constructions. In Section 5.6, we established two directions
for improving the performance of the protocol and took one direction by
optimizing the protocol using machine learning techniques and compression.
However, we suspect even more performance gain can be achieved by using
cryptographic constructions that are tailored and optimized for our setting
in which a large set of untrusted parties perform secure aggregation and
zero-knowledge protocols on large vectors.

• Advanced attacks. In our analysis, we showed that norm bounding protects
against all existing integrity attacks. It is however very likely that other attacks
exist, and it is useful to discover these to get an improved understanding of
the integrity of federated learning models. With these insights, we can then
develop additional defenses to make federated learning more robust.
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A Mathematical Background

Hypergeometric distribution

Given a set of N elements where K elements have a specified feature that we would
like to draw, the hypergeometric distribution describes the probability of having k
successes in n draws from this set, without replacement after drawing an element.

Definition A.1. A random variable X follows the hypergeometric distribution if
its probability mass function is given by,

Pr(X = k) =

(
K
k

)(
N−K
n−k

)(
N
n

)
where N is the population size, K is the number of success states in the population,
n is the number of draws and k is the number of observed successes [6].

Negligible function

Intuitively, a negligible function is a function whose output goes to zero as x −→∞,
but does so faster than the inverse of any polynomial [24].

Definition A.2. A function f : N 7→ R is called negligible if for all c ∈ R>0 there
exists n0 ∈ Z≤1 such that for all integers x ≤ n0, we have:

|f(x)| < 1

xc

Cryptographic hash function

Definition A.3. A function f : I 7→ O is a cryptographic hash function if it maps
inputs from an arbitrary length to outputs with a fixed size, i.e. I = {0, 1}∗ and
O = {0, 1}128, and f is one-way. That is, given an output o, it is infeasible to find a
corresponding pre-image i ∈ I such that f(i) = o.

MPC Security

Definition A.4. Given a multi-party computation protocol and a specification that
defines the behavior with regards to a trusted third party, a multi-party computation
protocol is secure if the adversary cannot achieve anything in the protocol that they
could not achieve in the specification [79].
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