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Abstract

Fully Homomorphic Encryption (FHE) allows for computations to be
carried out on encrypted data, and is slowly becoming used in real-world
deployments (e.g., in the Microsoft Edge Password Monitor), notably
thanks to theoretical improvements, implementation and hardware op-
timizations, as well as an ongoing ISO standardization.

Despite its tremendous potential as a building block for privacy-preserving
applications, FHE does not provide computation integrity, due to its
inherent malleability; when using FHE to delegate computations on en-
crypted data to a third party, a client does not have any guarantee
that the intended computation was carried out on its data. This lack of
integrity has obvious implications for the correctness of the result, but
can also lead to a complete loss of privacy, as a malicious server could
misuse the malleability of FHE to carry out a key-recovery attack.

While this issue has been raised in the community, it has received scant
attention, as FHE only recently matured enough to be deployed. The
variety of efforts studying this and related issues have mostly remained
isolated efforts, split across smaller sub-communities studying only cer-
tain aspects of the overall problem.

In this thesis, we are the first to consider this issue holistically: we map
and unify the space of existing approaches, analyse and evaluate their
relevancy to the needs of real-world FHE deployments, and use this
newly gained understanding to point out gaps and generic attacks for a
wide range of FHE integrity constructions in realistic settings.

We then propose novel integrity notions for real-world FHE deployments
that prevent these attacks, analyse their relation to existing notions and
propose generic constructions to achieve them. In addition, we explore,
improve and implement two families of promising, concrete integrity
primitives, and sketch an initial design for a novel integrity scheme
that would be capable of fully supporting the needs of real-world FHE
deployments.
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Chapter 1

Introduction

Fully Homomorphic Encryption (FHE) allows for computations to be car-
ried out on encrypted data, and is now seeing use in real-world deployments
(e.g., in the Microsoft Edge Password Monitor [Lau+21]), notably thanks to
theoretical improvements, implementation and hardware optimizations, as
well as an ongoing ISO standardization. Despite its tremendous potential as
a building block for privacy-preserving applications, FHE does not provide
computation integrity, due to its inherent malleability; when using FHE to
delegate computations on encrypted data to a third party, a client does not
have any guarantee that the intended computation was carried out on its
data.

This lack of integrity has obvious implications for the correctness of the result,
but can also lead to a complete loss of privacy, as a malicious server could
misuse the malleability of FHE to carry out a key-recovery attack [FHR21].
This issue has been raised in the community [ZPS12b; CT15; CGG16], but
it has received scant attention, as FHE only recently matured enough to be
deployed. Nevertheless, there have been a variety of efforts to study this and
related issues, but these have mostly remained isolated efforts, split across
smaller sub-communities studying only certain aspects of the overall problem.
A variety of issues have given rise to the current complex landscape of FHE
integrity.

Security Assumptions. Historically, FHE has been such a novel and non-
practical concept that its security against strong adversaries was not a cen-
tral tenet of FHE research. Accordingly, the FHE research community has
extensively made use of the assumption that the server running an FHE
application would be honest-but-curious, but not actively malicious [FV12;
BGV14; Chi+20; DM15]. Practitioners outside the research community are
usually not aware of this caveat, and the community (especially commercial
entities) understandably does not actively advertise this limitation either.
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This honest-but-curious assumption may be reasonable in some deployment
scenarios (e.g., when FHE is used only to ensure regulatory compliance, when
dealing with trusted or well-respected institutions cooperating on restricted
data, or in the blockchain setting, where all parties perform the same com-
putation). However, the necessity to trust the server to this extent is very
limiting to the scope of application scenarios, preventing the use of any cloud
computing platform that is not fully trusted. This is not possible in many
settings (e.g., for the defence and intelligence sectors). In addition, this as-
sumption does not cover the case of a compromise of an otherwise trusted
party by a malicious entity. In order to broaden the applicability of FHE,
FHE applications need to be strengthened against stronger adversaries and
existing attacks.

Attacks and Defences. In addition to this widespread weak assumption, the
security guarantees of FHE against stronger adversaries are very brittle. In-
deed, FHE research has mostly focused on designing and improving FHE
schemes in order to make them more practical, while the implications of us-
ing FHE as a primitive in larger protocols and applications has received much
less attention. Nevertheless, some works investigated these issues, outlining
both attacks and countermeasures for existing FHE schemes.
Attacks against the security of FHE have been known since shortly after
the birth of FHE [ZPS12b; CGG16], notably highlighting the inherent risk of
inadvertent decryption oracles in realistic FHE applications, and the resulting
catastrophic consequences for confidentiality. Practical key-recovery attacks
have also been developed for all major FHE schemes [ZPS12a; CT15; FHR21].
In order to remediate these attacks, a line of research has emerged that
constructs more robust FHE schemes [Bon+07; Lof+12; LGM16; Lai+16;
Emu+18; WWX18; Emu21; SET22], achieving indistinguishability against
chosen ciphertext attacks. Unfortunately, these constructions remain very
theoretical, being inefficient in practice and/or relying on extremely strong
cryptographic primitives. A different line of research tries to achieve Ver-
ifiable Computation (VC) for FHE; this notion guarantees that a certain
function was executed on the ciphertext, while preserving the confidential-
ity of inputs [GGP10; GW13; CF13; FGP14; FNP20; Boi+21; GNSV21;
Cha+22]. While these VC schemes are more concretely efficient than the
constructions mentioned above, there is still a significant gap between the
assumptions made by existing VC schemes and the way state-of-the-art FHE
schemes are used in practice. In particular, all these VC schemes can only
tolerate unrealistic malicious adversaries limited to weaker oracles than what
real-world settings provide.

Contributions. In this thesis, we are (to the best of our knowledge) the first
to consider this issue holistically: we map the space of existing approaches,
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analyse and evaluate their relevancy to the needs of real-world FHE deploy-
ments, and use these insights to propose a more unified perspective on in-
tegrity for FHE. We then propose novel integrity notions for real-world FHE
deployments, analyse their relation to existing notions and propose generic
constructions to achieve them. In addition, we sketch an initial design for
a novel integrity scheme capable of fully supporting the needs of real-world
FHE deployments.

We first study, unify, and compare existing integrity protection approaches
in Chapter 3. In Chapter 4, we then study two families of promising integrity
primitives, improve their efficiency, and provide the first open-source imple-
mentation of two concrete instantiations. We then point out fundamental
shortcomings in existing FHE integrity approaches, and show in Chapter 5
that for virtually all FHE applications, there is a significant risk of total
loss of privacy and correctness in the malicious setting. To address this, we
analyse the main FHE use cases, from which we extract properties that are
desirable for FHE applications to inform novel, more realistic security no-
tions. In order to further our understanding of the theoretical underpinnings
of FHE integrity, we investigate existing notions from the VC literature and
more traditional indistinguishability-based notions for FHE in Chapter 6.
In Chapter 7, we provide generic constructions to realise our novel notions
against strong adversaries in a realistic deployment setting. Finally, in Chap-
ter 8 we sketch ideas for a new integrity scheme that is fully compatible with
modern FHE and satisfies our stronger security notions.
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Chapter 2

Preliminaries

We now introduce our notation and conventions, as well as the relevant back-
ground for this thesis.

2.1 Notation and Conventions

We denote by a := b the assignment of b to the a; we let a← χ denote ran-
dom sampling from a distribution (and a← A sampling from a probabilistic
Turing machine), and let a ← S denote sampling from the set S uniformly
at random.

We will also use the Iverson bracket, defined as [b] := 1 if b is true and 0 otherwise.

When investigating the concrete efficiency of computations, concrete com-
plexities will be defined in terms of operations on certain input spaces. We
will write n X⊕Y to denote that a computation requires n applications of the
operator ⊕ : X × Y → Z.

Following the convention in the FHE literature, we identify Zp with the zero-
centered set Z ∩

[
−p

2 ,
p
2

)
, we write [·]p for the modular reduction in this set,

and b·e for rounding to the nearest integer.

Let κ ∈ N be the security parameter throughout. We say that a function
f is negligible in κ and denote it by negl(κ) if for all c > 0, f(κ) = o(λ−c)
For an algorithm A, AF (x)⇒ y denotes that A outputs y (potentially non-
deterministically) when run on input x, and given oracle access to OF . For
split adversariesA = (A1, . . . ,An), we implicitly allow the adversary to retain
state between the invocation of Ai and Ai+1, unless specified otherwise.
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2.2 Fully Homomorphic Encryption (FHE)

Fully Homomorphic Encryption (FHE) allows arbitrary computations to be
performed on encrypted data, enabling a wide range of privacy-preserving
applications (privacy-preserving Machine Learning, Private Set Intersection,
Private Information Retrieval, etc.) in a plethora of domains (health, bank-
ing, defence, etc.). FHE can be achieved in two ways: either by leveraging a
Leveled Homomorphic Encryption (LHE) scheme (which only support com-
putations up to some multiplicative depth), and choosing appropriate param-
eters for each circuit; or by using bootstrapping, which takes a ciphertext and
generates an equivalent, fresh re-encryption of the underlying plaintext by
homomorphically decrypting and re-encrypting. Popular FHE schemes in-
clude B/FV [FV12], BGV [BGV14], CKKS [Che+17], TFHE [Chi+20], and
FHEW [DM15].

Contrary to other privacy-enhancing technologies (e.g., Multi-Party Compu-
tation (MPC)), FHE is round-efficient and relatively communication-efficient,
as both the evaluation and decryption phases of a typical client-server pro-
tocol can be performed without interaction.

In recent years, FHE has become more and more practical and easy to use,
owing to theoretical efficiency improvements, better software implementation
[AB+22; Sea; MBo20], hardware acceleration [Boe+21], and dedicated tool-
ing ecosystems [VJH21]. In parallel, FHE is currently being standardized by
ISO [Iso].

However, as Homomorphic Encryption (HE) schemes are malleable by con-
struction (operations on ciphertext directly relate to operations on plain-
texts), they do not offer any integrity guarantees: a user has no way to check
that a HE result was computed using a given circuit.

Formally, we define FHE schemes as follows:
Definition 2.1 (FHE scheme)
An FHE scheme is a tuple of PPT algorithms E = (KGen, Enc,Dec, Eval),
where:

• KGen(1κ) outputs a public key pk, an evaluation key ek, and a secret
key sk for the security level κ

• Encpk(m; r) encrypts a plaintext m to a ciphertext ct, using the ran-
domness r. We usually do not write out the randomness explicitly, and
write Encpk(m) instead

• Evalek(F,Cin,Min) returns a ciphertext ct, corresponding to the evalua-
tion of the FHE circuit F on input ciphertexts Cin = (ct1, . . . , ctm) and
input plaintexts Min = (m1, . . . ,mn)

• Decsk(ct) decrypts the ciphertext ct to a plaintext m
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2.2.1 FHE Schemes

FHE schemes can be categorized in four consecutive generations. The first
generation consists of the first fully homomorphic encryption introduced by
Gentry [Gen09] (and improvements thereupon); while this scheme was a ma-
jor theoretical breakthrough, it was wholly impractical.

B/FV, BGV. Second-generation schemes were derived from techniques by Brak-
erski, Gentry, Vaikuntanathan, and others. The two schemes of this gener-
ation still used extensively in practice today are B/FV [FV12] and BGV
[BGV14].

In the simplest version of B/FV and BGV, the message space is Zt, and the
ciphertext space is (Zq[X]/〈XN + 1〉)k with k ≥ 2. A more sophisticated
version (which is actually used in practice) uses the batching technique to
pack N messages in Zt into one ciphertext, under the restriction that t =
1 mod 2N . Effectively, this allows the message space to be extended to
Zt[X]/〈XN + 1〉. All FHE operations are then carried out “slot-wise”, and
one can view of the message space as an array of N values, with addition and
multiplication being performed independently for each slot.

TFHE, FHEW. Third-generation schemes eliminate the expensive relinearisa-
tion procedure (see Section 2.2.2), and rely much more heavily on bootstrap-
ping. TFHE [Chi+20] and FHEW [DM15] are the two major schemes from
this generation that are used in practice. Here, the message space is Z2.

CKKS. In 2016, Cheon et al. introduced the CKKS scheme [Che+17], which
supports approximate computations. CKKS is more efficient in practice than
BGV and B/FV, even if it uses the same underlying rings for plaintexts and
ciphertexts, and is the preferred scheme for machine learning applications.

2.2.2 FHE operations

FHE circuits are expressed as a directed acyclic graph of gates connected by
wires. State-of-the-art FHE schemes support the following gates:

• Ciphertext-ciphertext addition (Add : C × C → C) and ciphertext-
plaintext (AddPlain : C × M → C) addition, which does not require
an evaluation key

• Ciphertext-ciphertext (Mul : C × C → C) and ciphertext-plaintext
(MulPlain : C × M → C) multiplication, which does not require an
evaluation key

• Modulus switching (ModSwitch : C → C), which does not require an
evaluation key
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• Rotation by k (Rotek : C × N→ C), which requires a rotation key

• Relinearization (Relinek : C → C), which requires a relinearization key

• Bootstrapping (Bootstrapek : C → C), which requires a bootstrapping
key

Operations involving a ciphertext and a plaintext are much faster than their
ciphertext-ciphertext equivalent (due to the smaller representation of plain-
texts), and are therefore used extensively in practice. In order for an FHE
scheme to be useful, it should satisfy some notion of (possibly approximate)
correctness; informally, performing operations on ciphertexts should translate
to the same operations being performed on the underlying plaintexts. Addi-
tionally, some functionalities (like branching or looping on encrypted data)
are not easily supported by FHE, which in practice limits FHE computations
to logical or arithmetic circuits.

In order to illustrate how these operations are implemented in practice, we
recall the definition of the BV scheme [BV11] below. The BV scheme serves
as a blueprint for the modern B/FV, BGV, and CKKS schemes, and is often
used in the literature to illustrate new constructions and attacks.
Definition 2.2 (BV scheme [BV11])
Let χ be a Gaussian distribution over the ring R = Z[X]/〈XN + 1〉. For
circuits of multiplicative depth up to degree d, the BV scheme is defined as
follows:

KGen(1κ) : returns a secret key sk := (1, s, . . . , sd−1), where s ← χ, and a
public key pk := (a, as+ te), where a← Rq and e← χ;

Enc(m) : samples u, e0, e1 ← χ, and returns the ciphertext ct = (ct0, ct1, 0, . . . , 0)
∈ Rd

q , where ct0 := m + pk0u+ e0 and ct1 := −pk1u+ e1;

Eval(f, ct1, . . . , ctk) : proceeds gate-by-gate, computing additions and multi-
plications as follows:

• (ct + ct′)i := cti + ct′i
• (ct · ct′)i :=

∑i
j=0 ctj · ct′j−i

Dec(ct) : computes [〈ct, sk〉]t =
[∑d−1

i=0 cti · si
]
t

The BV scheme does not support ciphertext maintenance operations (i.e.,
relinearisation, modulus switching, bootstrapping).

2.2.3 FHE Optimizations and Implementations

In order to make FHE efficient enough in practice, all implementations rely
on a small set of optimizations, which allow for tremendous speed-ups at the
cost of limitations on FHE parameters and operations.
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Firstly, the ciphertext modulus q is usually several hundred bits long (for
B/FV, BGV, and CKKS); in order to use standard CPU instructions, this
modulus is split into a chain of prime moduli q =

∏l
i=1 qi, where each qi fits

in a machine word (typically, qi ≤ 262). Each ciphertext coefficient is then
split into l components using the Chinese Remainder Theorem (CRT), and
is said to be in CRT or RNS (Residue Number System) representation.

One of the most elementary (and expensive) operations in FHE is the mul-
tiplication of two polynomials in Rq, which requires convoluting two polyno-
mials of high degree N ≥ 210, followed by a modular reduction by q and by
XN + 1. While doing this naïvely would have a complexity of Θ

(
N2

)
, im-

plementations use the Fast Fourier Transform (FFT) (or rather the Number-
Theoretic Transform (NTT), its equivalent for finite fields), which has a
complexity of Θ(N log(N)). This forces N to be a power of two (typically,
N ∈

{
2k

∣∣ k ∈ [10..16]
}

).
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Chapter 3

Decomposition and Analysis of FHE
Integrity Constructions

Over the years, a number of approaches have been proposed to mitigate
the integrity issues of FHE (some ad-hoc, and some more principled con-
structions). However, these approaches cover slightly different settings and
provide different variants of integrity for a variety of settings. In this chap-
ter, we aim to provide a generic framework for reasoning about integrity and
privacy guarantees for FHE deployments, and to unify existing constructions
into general paradigms. This allows us to fairly compare existing approaches,
and to inform and simplify the design of newer and better integrity solutions.

In Section 3.1, we study existing integrity approaches for FHE and group
them into four general paradigms. In Section 3.2, we present a unified formal
definition of verifiable computation that generalises the various definitions
used in the literature. Finally, we discuss limitations of existing instantiations
and the inherent challenges posed by FHE integrity in Section 3.3.

3.1 Existing Paradigms for FHE Integrity

State-of-the-art FHE integrity approaches derive from a long branch of re-
search that has tried to address the challenges of securely and privately of-
floading data (and computation thereon) to an untrusted server.

Gennaro et al. were the first to introduce the notion of Verifiable Computa-
tion (VC) [GGP10], which allows a client to outsource the computation of a
function (on inputs provided by the client) to a server, with a guarantee that
the result returned by the server would be correct. A VC scheme allows the
client to encode its input x as (σx, τx), where σx is a public value to be sent
to the server, and τx is kept by the client for later verification. The server can
then evaluate the function on σx, yielding the encoded result σy, which is sent
back to the client. Finally, the client can decide whether it accepts the result
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σy (given the corresponding verification tag τx), and can then decode σy to
y. Informally, this initial notion of VC requires the following guarantees:
Correctness: an honest client will always accept the result computed by an
honest server;
Security: a malicious server cannot make a client accept a false result;
Input and Output Privacy: a malicious server does not learn anything about x
or y from its interaction with the client;
Outsourceability: for the client, offloading should be (asymptotically) more
efficient than computing the function (on unencoded inputs) in the first place.
While the connection between VC and FHE might not seem obvious at first,
we will show in Section 3.2 that VC actually captures the vast majority of
FHE integrity approaches in the literature. However, before introducing the
general paradigms for FHE integrity, let us first delve a bit into the early VC
literature (which often has few ties with FHE) in order to better understand
how this notion came to be, and shed some light on some of its characteristics.

3.1.1 Early Verifiable Computation Approaches

This initial definition prompted a flurry of follow-up work, with a variety of
VC constructions based on different cryptographic primitives.
In the same paper [GGP10], Gennaro et al. propose a VC scheme, by eval-
uating the outsourced function using Yao’s garbled circuits [Yao82; Yao86].
Garbled circuits by themselves actually implement a one-time verifiable com-
putation scheme, but the circuits need to be re-generated for each new com-
putation request. To overcome this issue, Gennaro et al. use an FHE scheme
in order to reuse the same garbled circuit multiple times (by encrypting the
garbled circuit labels instead of revealing them to the server). Interestingly,
FHE is not used here to protect the data directly, but rather to ensure that
the garbled circuit remains secure under reuse.
A few years later, Parno et al. [PRV12] extended the VC definition to include
public delegatability (meaning that every party is able to encode its input x
as σx and τx), and public verifiability (every party is able to verify a result σy
given a corresponding verification tag τx), and provide a construction that
satisfies these new requirements. While this construction does not involve
FHE (rather, it is based on attribute-based encryption), we mention this pa-
per because the notions of public delegatability and verifiability it introduces
have been prevalently used in later FHE-based VC constructions. In partic-
ular, [PRV12] is one of the few papers (if not the only paper) that present a
concrete setting where public delegatability and verifiability are desirable.
Four parties are involved in this example scenario: a doctor (which we will
call the organiser), a lab assistant (the encryptor), a server, and a patient (the
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verifier). Public delegatability would allow the organiser to bear the burden
of an expensive, one-time pre-processing phase (and to determine the specifics
of the function to be offloaded). After this setup phase, any encryptor could
use the function-specific public and evaluation keys to delegate computations
to the server, with no involvement from the organiser. Public verifiability, on
the other hand, allows the encryptor to also generate a verification key when
they delegate the computation to the server. The verifier can then obtain the
output (i.e., their test result) directly from the server, and verify it using the
verification key it received from an encryptor.

However, the construction in [PRV12] does not achieve input privacy1. When
considering VC schemes with input and output privacy, it is unclear in which
settings public verifiability would be sensible. On one hand, the ability to ver-
ify a result that one cannot decrypt seems quite artificial (e.g., the patient in
the setting above would only learn that there exists a valid encoding of their
test result, but nothing more). On the other hand, a party that needs to de-
code the result would already need to possess of a secret key, and it is unclear
how to meaningfully define a key generation protocol in this setting. One re-
maining benefit of public verifiability is that it naturally grants protection
against verification oracle (as the VC scheme securely supports verification
by any party, even the adversary). However, protection against verification
queries can also be achieved through other means (e.g., by aborting on invalid
verifications). We investigate this discrepancy further in Section 5.1.3 and
show that for most modern FHE use cases, public verifiability is not required.

Some additional non-FHE approaches to construct (input-private) VC were
also proposed, e.g., by Goldwasser et al. in [Gol+13] (based on a single-
key functional encryption). However, these approaches are very limited (e.g.,
[Gol+13] does not guarantee output privacy, and only supports single-bit out-
puts). Since then, FHE-based approaches (which are often more flexible and
offer more guarantees) have formed the bulk of the research on securely dele-
gating computation. In the remainder of this section, we will study the exist-
ing literature on FHE integrity, and classify approaches into four paradigms:
MAC-then-Encrypt, Encrypt-and-MAC, Encrypt-then-MAC, and Compute-
then-Prove.

3.1.2 MAC-then-Encrypt

The MAC-then-Encrypt (MtE) paradigm requires users to first compute a
(homomorphic) MAC over their plaintexts before encrypting both with FHE.
If special care is taken to ensure that the FHE homomorphism applies both
1Parno et al. remark that by using attribute-hiding attribute-based encryption, their con-
struction could achieve input privacy [PRV12, Remark 1], but the authors do not define
their notion of input privacy. In particular, the relation between input privacy and public
verifiability is not investigated.
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to the plaintext and its MAC, a result can be decrypted to a message and
its MAC, which can then be checked. Here, the privacy of the MtE scheme
can be reduced to the semantic security of the FHE scheme, and security
to the unforgeability of the MAC. However, special care must be taken in
cases where the user might implement an oracle (e.g., a MAC verification
oracle), which could leak information about the plaintext. This is the reason
some MtE approaches are not secure against verification queries. As for more
traditional public-key encryption schemes, this is usually addressed by relying
on the MAC secret, and/or by hiding the positions of the MAC and plaintext
in the ciphertext using FHE’s semantic security.

The MtE paradigm for FHE integrity was first used by Gennaro and Wichs
[GW13]; for a security parameter κ, each bit b of plaintext is encrypted to κ
ciphertexts ct1, . . . , ctκ, with cti is either an encryption of b (if i is a randomly
selected half of the set {1, . . . , κ}, or a pseudo-random encryption of 0 with
random coins derived from a PRF (if i is in the other half). This construction
is not secure against verification queries. It is also not efficiently verifiable,
as re-computing the result MAC after the computation is as expensive as
computing the result in the first place. To remedy this, Gennaro and Wichs
propose to use a Succinct Non-interactive ARGument (SNARG) (for rela-
tions in P) to allow for a more efficient verification procedure, but give few
additional details. This construction is not secure against verification queries,
but can be made secure for an a-priori bounded number of queries [GW13].

Following up on this work, Catalano and Fiore introduce a new information-
theoretic MAC [CF13], which supports fewer functions (only arithmetic cir-
cuits of a bounded depth) but is more efficient. For each plaintext m, the
MAC is a degree-1 polynomial that equals m when evaluated at 0, and equals
a pseudo-random value when evaluated at a random point. However, they
only present their MAC construction, and do not study its composition with
FHE.

More recently, Chatel et al. [Cha+22] have generalised these two approaches
and adapted them for state-of-the-art FHE schemes, and provided the first
implementation of such a scheme. As the MAC used in the MtE paradigm
only needs to support homomorphism with respect to plaintexts, it is rel-
atively easy to support all (ciphertext) operations of state-of-the-art FHE
schemes; [Cha+22], for example, support rotations and relinearisations. Sim-
ilarly to [GW13], this approach is not secure against verification queries.

While the notion of these so-called homomorphic authenticator approaches
is not quite equivalent to VC, we explore the connection between the two
notions in Section 3.2.
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3.1.3 Encrypt-and-MAC

In the Encrypt-and-MAC (EaM) paradigm, a MAC is computed on the plain-
text, and the plaintext is encrypted using the original FHE scheme. In order
to ensure privacy, the MAC must be semantically secure as well. Addition-
ally, some care must be taken when evaluating, as both MACs and ciphertexts
must undergo the same operations, although they may be elements of differ-
ent arithmetic structures. In particular, ciphertext maintenance operations
(which modify the ciphertext without modifying the underlying plaintext)
must have an equivalent for MACs.

In [LWZ18], Li et al. introduce the notion of privacy-preserving homomorphic
MACs, which satisfy this hiding property, by using leveled multilinear maps,
and a generic FHE scheme.

3.1.4 Encrypt-then-MAC

The Encrypt-then-MAC (EtM) approach firsts encrypts the plaintext, which
is then protects with a homomorphic MAC before outsourcing. As the MAC
does not depend on the plaintext, the privacy of the scheme can be reduced to
the semantic security of the underlying FHE scheme, while its security hinges
on the unforgeability of the MAC. While conceptually easier to analyse than
the MtE and EaM, the MAC in EaM constructions needs to be homomorphic
with respect to operations on ciphertexts (including ciphertext maintenance
operations), which is often much harder to achieve than the corresponding
homomorphic property on plaintexts.

This limits the applicability of this approach in practice; Fiore et al. make
use of this paradigm in [FGP14], and instantiate their MAC using pairings.
In order to bridge the gap between ciphertexts in FHE rings and the pairing
groups, they introduce a homomorphic hash function from Rq to Zq (where
q prime is the order of the pairing group). The efficiency of the verification
is guaranteed by using amortised closed-form efficient PRFs. However, the
combination of these primitives to construct the homomorphic MAC limits
the applicability of the [FGP14] approach to quadratic circuits only.

3.1.5 Compute-then-Prove

A much newer paradigm, which we dub Compute-then-Prove (CtP) replaces
MACs with (zero-knowledge) proofs (or rather arguments). Here, everything
is the same as for a traditional FHE application, except that the server must
additionally provide a proof that the output ciphertext is the result of ap-
plying some (usually public) circuit to the client’s inputs. This paradigm ad-
dresses issues from the other three paradigms presented above: Firstly, prov-
ing over ciphertexts allows for easier security proofs, and typically stronger
security guarantees against verification oracles. Additionally, proofs are more
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flexible than MACs, and allow for non-deterministic functions, where the
server is allowed to contribute to the computation with a (private) input.
At least in theory, modern proof systems (e.g., Succinct Non-interactive AR-
guments of Knowledge (SNARKs)) should also offer a competitive efficiency
compared to MACs, but the concrete efficiency of such proof systems has not
fully caught up yet.

Fiore et al. first introduced a SNARK for FHE in [FNP20], with support
for arbitrarily deep computations on the BV scheme. However, the SNARK
and FHE parameters of this construction need to be compatible, which puts
unrealistic assumptions on the FHE parameters (e.g., the ciphertext modulus
q should be a big prime). Using their newly introduced SNARK, Fiore achieve
public delegatability and public verifiability. Additionally, they introduce the
notion of context-hiding, which preserves input privacy against a party that
has access to the result ciphertext and any verification information about the
input.

Following up on this work, Bois et al. introduced a more flexible instantiation
of the CtP paradigm, by decoupling the SNARK and FHE components fur-
ther (by using homomorphic hashing to map FHE ciphertexts to inputs more
suitable for the SNARK). This construction achieves public delegatability and
public verifiability. This is also the first (and to the best of our knowledge
the only) VC approach capable of handling non-deterministic computation,
and to offer provable security for this setting. However, their construction is
only applicable to the BV scheme (although with general modulus choices).
Even more recently, Ganesh et al. construct a new SNARK over rings, which
can more easily represent FHE computations; however, it is not specified how
one would create a VC scheme from this SNARK.

Finally, Natarajan et al. [Nat+21] explored the use of hardware Trusted
Execution Environments (TEEs) as a proving primitive. Here, a hardware
attestation would take on the role of a cryptographic proof or argument,
while input privacy is guaranteed by FHE. Natarajan et al. show how this
approach can support non-deterministic inputs, and implement their solution
for state-of-the-art FHE schemes.

While they are at the moment still more limited (both in terms of efficiency
and expressivity) than other constructions (e.g., [Cha+22]), approaches using
the Compute-then-Prove paradigm are the only ones that can support real-
world non-deterministic FHE use cases with inputs from multiple parties.
As we believe these approaches are the most promising to achieve flexible
integrity guarantees for FHE, we will therefore focus on this paradigm for
the remainder of this thesis.
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3.2 Integrity through Verifiable Computation

We now present a unified formal definition of verifiable computation for FHE,
which captures and generalises the variants we observed in the literature. As
we gain a more consolidated view of the field of VC for FHE, we point out
gaps and definitional limitations common throughout the literature, which
we will discuss in Chapter 5.

Definition 3.1 (Verifiable Computation)
A verifiable computation scheme VC = (KGen,ProbGen,Compute, Verify) con-
sists of the following PPT Turing machines:

Setup(1κ)→ (pk, sk) : for a security parameter κ, generates the function-
independent public and private parameters;

KGenpk(f)→ (pkf , skf ) : generates a public key (used by the server to com-
pute f) and a secret key (used for verifying and decoding the result);

ProbGenkey(x)→ (σx, τx) : using key, encode the input x as a public value σx
(given to the server), and a verification tag τx. If key is pk, the VC scheme
is said to offer public delegatability [PRV12], i.e., anyone can delegate com-
putations. On the other hand, if key is sk, we will say that the VC scheme
offers designated delegatability;

Computepkf (σx, w)→ σy : computes an encoded version of the function’s out-
put y = f(x,w), given the server’s input w;

Verifykey(τx, σy)→ b : verify the result of the computation, and decode; the
client accepts y = f(x,w) if b = 1, and rejects otherwise. If key is pkf ,
the VC scheme is said to offer public verifiability, and offers designated
verifiability if key is skf ;

Decodesk,skf (σy)→ y : decodes σy to y using the secret keys.

If the server can contribute to the computation with an input w, we say that the
VC scheme supports non-determinism; if w = ∅, the scheme is deterministic.

A VC scheme must satisfy the correctness, outsourceability, security, and
input privacy properties, as defined below.

The notion of non-deterministic VC was introduced by Bois et al. [Boi+21]
(who however only formulate it in conjunction with public delegatability and
public verifiability), and naturally generalises the non-deterministic case. In
the following, we will use key as a generic placeholder for either a public or
secret key, depending on whether a given scheme offers public delegatabil-
ity/verifiability.
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Definition 3.2 (Correctness)
Correctness guarantees that an honest verifier will always accept a result
computed by an honest worker. More formally, for all functions f , and for
all (x,w) in the domain of f :

Pr


Verifykey(τx, σy) = 1

∧
Decodesk,skf (σy) = f(x,w)

∣∣∣∣∣∣∣∣∣∣
(pk, sk)← Setup(1κ)

(pkf , skf )← KGen(f)

(σx, τx)← ProbGenkey(x)

σy ← Computepkf (σx, w)

 = 1

We note here that this intuitive definition assumes that the VC scheme is
both exact (the decoded y must match f(x,w) exactly), and perfect (the
decoding step must always succeed, and is not allowed to fail with negligible
probability). These assumptions de facto prevent instantiations with some
modern FHE schemes, as we show in Section 5.3.
Definition 3.3 (Outsourceability)
Outsourceability ensures that the complexity of the computations performed
by the verifier (namely ProbGen and Verify) is less than the computation
required to evaluate f (over the unencoded input x). Formally, for any x and
σy, the time required by (σx, τx) ← ProbGenkey(x) plus the time required by
Verifykey(τx, σx) is in o(T ), where T is the time required to compute f(x).

Contrary to [Boi+21], we only define outsourceability for deterministic schemes;
indeed, the requirement that computations performed by the client take less
time than computing f(x,w) is ill-defined when the client does not have
access to w. We therefore waive the outsourceability requirement for the
non-deterministic case.
Definition 3.4 (Security)
A VC scheme is secure if a malicious worker cannot make the verifier accept
an incorrect answer. Formally, a VC scheme is secure if for any PPT adver-
sary A, the advantage of A in the following game ExprVer[A](1κ) is negligible:

AdvVer[A](κ) = Pr
[
ExprVer[A](1κ)⇒ 1

]
= negl(κ)

ExprVer[A](1κ)

(pk, sk)← Setup(1κ)

x← AO1
1 (pk)

(σx, τx)← ProbGenkey(x)

(f, σy)← AO2
2 (σx, τx)

b← Verifykey(τx, σy)

return (b = 1) ∧
(
∄w : Decodesk,skf (σy) = f(x,w)

)
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The set of oracles O1,O2 available to the adversary (chosen from the oracles
below) determines the strength of the adversarial model. Usually, the mini-
mum set of oracle considered in the literature is O1 = O2 = {OKGen,OProbGen},
where OKGen is only allowed to be queried once2.
VC schemes with security against verification queries additionally grant the
adversary access to the verification oracle OVerify.

OVer
KGen(f) // Only queried once

(pkf , skf )← KGenkey(f)

return pkf

OVer
ProbGen(x)

(σx, τx)← ProbGenkey(x)

return σx

OVer
Verify(τ, σ)

b← Verifykey(τ, σ)

return b

OVer
Decode(τ, σ)

b← Verifykey(τ, σ)

if b = 0 :

return ⊥
else :

return Decodesk,skf (σ)

Definition 3.4 defines security for the non-deterministic case (as in [Boi+21]);
for the deterministic case, A’s winning condition simplifies to (b = 1) ∧
(Decodesk,skf (σy) 6= f(x)). We note here that this definition does not allow
for approximate VC schemes, which would be trivially insecure under this
definition (the decoded value y would only be approximately f(x), but not
exactly). This is a similar issue as in Definition 3.2, and we resolve it in
Section 5.3.
The oracle OProbGen is needed to model non-publicly-delegatable schemes (and
is redundant for publicly-delegatable schemes), as the adversary would other-
wise not be able to generate encodings [FNP20]. For schemes with designated
delegatability, the secret verification value τx is not shared with the adver-
sary.
We also introduce the decoding oracle ODecode, which naturally generalises
the verification oracle OVerify. Indeed, it seems quite artificial to us to restrict
the adversary to the verification stage only. To the best of our knowledge,
none of the VC schemes for FHE outlined above consider such a decoding
oracle. We show how this omission can to complete key-recovery attacks and
a total loss of privacy in Chapter 5.
2This is done for simplicity; indeed, any adversary calling OKGen multiple times can be
reduced straightforwardly to an adversary making only one such query, and can be easily
simulated [Boi+21].
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Definition 3.5 (Input Privacy)
Input privacy is formalised using an indistinguishability game: formally, a
VC scheme provides input privacy if the advantage of any PPT adversary A
in the following game ExprPriv[A](1κ) is negligible:

AdvPriv[A](κ) =
∣∣∣Pr

[
ExprPriv0 [A](1κ)⇒ 0

]
− Pr

[
ExprPriv1 [A](1κ)⇒ 1

]∣∣∣ = negl(κ)

ExprPrivb [A](1κ)

(pk, sk)← Setup(1κ)

(x0, x1)← AO1
1 (pk, 1κ)

(σb, τb)← ProbGenkey(xb)

b̂← AO2
2 (pk, σb, τb) // Respectively AO2

2 (pk, σb)

return b = b̂

The set of allowed oracles O1,O2 in this game are the same as in Defini-
tion 3.4, and the oracles themselves are implemented in the same way, except
for ODecode, which would need to be adapted to prevent trivial attacks (i.e.,
the adversary should not be allowed to query the decoding of σb, or any σ
derived from σb). However, as ODecode is usually not part of O2 (due to the
impossibility of achieving CCA2 security, see Chapter 6), we do not write out
these checks.

We define two different versions of the experiment, varying the inputs given
to A2 in the post-challenge phase: in approaches with public verifiability, the
adversary receives (pk, σb, τb) (capturing the requirement that a verification
tag τx should not leak information about x), whereas schemes with designated
verifiability only give access to σb.

Finally, we specify the context-hiding property, as introduced in [FNP20] and
extended to the non-deterministic case in [Boi+21].

Definition 3.6 (Context-Hiding)
Informally context-hiding guarantees two properties:

(a) An adversary with access to τx, sk, skf , and σy should not learn anything
more about (x,w) than what it could not infer by being honest. This
models the case where the verifier/decryptor is a different party than the
encryptor (e.g., an analyst that is only authorised to decrypt aggregated
analytics of private data, but not the raw data).

(b) An adversary with access to τx, sk, skf , σy and σx should not learn any-
thing more about w than what it could infer by being honest. This
models the case where the verifier/decryptor colludes with the encryptor
(or is the same party), and tries to recover the server’s private input.
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Formally, context-hiding is defined using simulators: a VC scheme is context-
hiding if there exist efficient simulator algorithms S1, S2, S3, Sτ such that:

S1 : the following distributions are indistinguishable:

{(pk, sk) | (pk, sk)← Setup(1κ)}

{(pk∗, sk∗) | (pk∗, sk∗, td)← S1(1
κ)}

S2 : for any f , the following distributions are indistinguishable:{
(pkf , skf )

∣∣∣∣∣ (pk, sk)← Setup(1κ)

(pkf , skf )← KGenpk(f)

}
{
(pk∗f , sk

∗
f )

∣∣∣∣∣ (pk∗, sk∗, td)← S1(1
κ)

(pk∗f , sk
∗
f , tdf )← S2(td, f)

}

S3 : For any f and (x,w), the following distributions are indistinguishable:(pk∗, sk∗, pk∗f , sk
∗
f , σx, τx, σy)

∣∣∣∣∣∣∣∣∣∣
(pk∗, sk∗, td)← S1(1

κ)

(pk∗f , sk
∗
f , tdf )← S2(td, f)

(σx, τx)← ProbGenkey(x)

σy ← Computepkf (σx, w)


(pk∗, sk∗, pk∗f , sk

∗
f , σx, τx, σ

∗
y)

∣∣∣∣∣∣∣
(pk∗, sk∗, td)← S1(1

κ)

(pk∗f , sk
∗
f , tdf )← S2(td, f)

σ∗y ← S3(tdf , τx, f(x,w))


Sτ : for any x and for (σx, τx) ← ProbGenkey(x), Sτ (td) is indistinguishable
from τx.

3.2.1 Verifiable Computation: a Unified FHE Integrity Notion

Some approaches studied in Section 3.1 have been introduced using some vari-
ant of the verifiable computation formalism, and are thus captured directly
by our definitions above (this is the case for all cryptographic constructions
using the EtM and CtP paradigms). Other works (in particular those us-
ing the MtE and EaM paradigms) have coined their own terminology and
definitions. In this subsection, we connect these constructions to verifiable
computation, and express them using the formal definitions above.
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MAC-then-Encrypt. We formalise MAC-then-Encrypt schemes as determin-
istic, privately-delegatable and privately-verifiable VC schemes. Here, KGen
is independent of the function, and generates a private MAC key, and an
empty public key. For each plaintext in the input x, ProbGen firsts com-
putes a MAC on both the plaintext and on its identifier (e.g., the index of
this plaintext among the inputs to the computation), and encrypts both the
plaintext and the MAC as σx. The verification tag τx is simply the index
of the plaintext, and Compute is simply the FHE evaluation function. For
verification, σy is first decrypted to a resulting plaintext and its correspond-
ing MAC; this MAC-plaintext pair can then be checked by the client using
its secret MAC key. Finally, Decode simply outputs the plaintext, stripped
from its MAC. Since all inputs to the computation need to be MAC-ed first in
order for the verification to go through, these schemes do not support inputs
from the server.

The fact that for σy needs to first be decrypted before any verification can
take place, coupled with the MAC being computed on private information,
makes this approach prone to leak secret information upon verification, and
is therefore usually not secure against verification oracles.

Encrypt-and-MAC. We formalise Encrypt-and-MAC schemes as determinis-
tic, privately-delegatable and publicly-delegatable VC schemes. As for MtE
schemes, KGen generates MAC keys independently of the function to be eval-
uated. For an input x, ProbGen MACs all plaintexts and their indices, and
encrypts them separately. The encoding σx is thus composed of pairs of
MACs and ciphertexts, while the verification tag τx only holds the plaintext
indices. Compute performs the computation on both ciphertexts and MACs
simultaneously, and outputs a ciphertext together with its corresponding
MAC. For verification, the resulting ciphertext is first decrypted, and the
plaintext is checked against the MAC. Decoding simply returns the plaintext
if the verification succeeded.

As for the MtE case, this approach is prone to leak secret information upon
verification, as the resulting ciphertext must also be decrypted before any
checks take place, and the MAC is also dependent on the ciphertext. For
example, we note that while the approach in [LWZ18] is secure (in the sense of
Definition 3.4) against verification queries, its input privacy is not guaranteed
in the presence of a verification oracle.

3.3 Limitations of Existing Paradigms and Instantiations

Unfortunately, throughout all these FHE integrity approaches (summarised
in Table 3.1), we still see significant gaps between theoretical constructions
and real-world FHE.
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Approach SotA FHE Circuit Non-Det. Context-
Hiding Approx. Verif.

Queries Impl.

MtE
[GW13] Any # # # Bounded #
[CF13] Any # # # Unbounded #
[Cha+22]  Any # # # None  

EtM [FGP14] H# Quadratic # # # None  
EaM [LWZ18] Any # # # None #

CtP

[FNP20] H# Any #  # Unbounded #
[Boi+21] H# LogspaceUnif   # Unbounded #
[GNSV21] H# Any   # None H#†

[Nat+21]  Any  #  Unbounded  ‡

†: implemented as part of this thesis, see Section 4.1.
‡: re-implemented as an open-source library as part of this thesis, see Section 4.2.

SotA FHE: level of support for state-of-the-art FHE schemes (H# denotes support for the BV
scheme (potentially with additional limitations), denotes full support for at least one scheme in
{B/FV, BGV, TFHE, FHEW, CKKS}, including ciphertext maintenance operations, and an empty value
denotes that the approach is generic, and was not evaluated with respect to a particular scheme);

Circuit: supported circuits ([Boi+21] only supports logspace-uniform circuit);

Non-Det.: support for a server input during the computation;

Context-Hiding: Support for context-hiding;

Approx.: support for approximate computations;

Verif. Queries: number of verification queries for which the scheme remains secure and input-
private;

Impl.: whether the scheme was implemented and evaluated in practice (for [GNSV21], H# denotes
that the implementationwas carried out as part of this thesis, butwas not part of the original paper).

Table 3.1: Characteristics and limitations of existing FHE integrity paradigms and approaches

First, most integrity approaches only offer support for a limited set of use
cases. For example, paradigms involving MACs (MtE, EaM, EtM) are limited
to authenticated analytics, and are therefore not suitable for more complex
FHE deployments that involve inputs from another party. Similarly, context-
hiding is achieved generically by only three approaches [FNP20; Boi+21;
GNSV21]. Existing approaches are also limited in their support for general
circuits, and in their support for approximate computation.

Additionally, even the most promising constructions based on the CtP paradigm
are still limited in their support for state-of-the-art FHE schemes, as well as
in their efficiency. In particular, none of the cryptographic CtP approaches
support modern FHE schemes as implemented and used in practice.

On a more abstract note, many of these papers do not introduce a generic
construction, but propose new primitives and a corresponding VC scheme at
the same time, which leads to ad-hoc proofs and analyses tailored to a specific
primitive. This makes generalising existing results and improving individual
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primitives harder than necessary. The subtle differences in VC definitions
and adversarial models also hinder a fair comparison of the security guaran-
tees of each approach. Besides, many works do not provide an (open-source)
implementation of their approach, which significantly increases the difficulty
of comparing existing approaches, let alone using integrity protection in prac-
tice.

Finally, in addition to this gap in functionality and efficiency between existing
approaches and real-world FHE, we also see a significant gap in the adver-
sarial models used in the VC community, and realistic FHE deployments.
Most notably, verification oracles only crudely model the plethora of leakage
avenues of a realistic application. We will investigate this issue in more detail
in Chapter 5, and show concrete key-recovery attacks for such settings.

Beyond the inherent limitations of the paradigm being used, FHE approaches
are also limited (both in efficiency and expressiveness) by the integrity prim-
itives they use. In the next chapter, we outline the requirements needed for
practical integrity primitives, and provide analyses, improvements, and an
implementation for two concrete primitives.
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Chapter 4

Evaluating Integrity Primitives in Practice

We will now take a closer look at the integrity primitives at the heart of the
constructions outlined in Chapter 3, i.e., hardware-based or cryptographic
mechanisms that ensure the integrity of a computation. In order to be prac-
tical, an integrity primitive (e.g., a zero-knowledge proof system) must over-
come the following challenges:

Ciphertext Expansion. FHE ciphertexts are typically much larger than plain-
texts (usually 1–2 orders of magnitude), which poses inefficiency issues when
trying to prove properties over plaintexts by working over ciphertexts. In ad-
dition, some applications require strong efficiency guarantees, where the cost
of offloading and verifying a computation to a server must be faster than
performing this computation over plaintexts.

Algebraic Structure. State-of-the-art FHE schemes use specific algebraic struc-
tures (power-of-two cyclotomic rings with composite moduli), whereas most
integrity and proving tools in the literature work over prime fields. In addi-
tion, efficient FHE implementations can use multiple rings for a single FHE
operation (for example, multiplication in BGV uses three rings with different
moduli), whereas non-FHE approaches to integrity usually only use the same
structure throughout. While it is possible to bridge the gap between FHE
structures and structures more amenable for proving, this generally incurs a
heavy cost in efficiency or expressivity, or both.

Non-algebraic Operations. Efficient FHE implementations also make use of
non-algebraic operations (e.g., rounding, bit-decomposition). These opera-
tions are hard to express natively in the language of existing proof systems,
which again drastically limits the efficiency and/or expressivity of integrity
approaches for state-of-the-art FHE schemes.
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As discussed in Section 3.1, most integrity primitives used in the literature are
either not expressive enough to capture the full capabilities of modern FHE,
or not efficient enough to be realistically used in practice. These shortcomings
prompt us to search for more practical integrity primitives for state-of-the-art
FHE. In order to address the challenges outlined above, we conjecture that
efficient and flexible integrity primitives for FHE should satisfy the following
properties:

FHE-Friendliness. Each integrity primitive uses its own representation to
express computations and statements; ensuring that the “translation gap”
from FHE computations to the primitive’s representation is minimal (e.g.,
by ensuring that they both operate on the same arithmetic structures, and
use similar arithmetic operations) is a key factor for the concrete efficiency of
the overall VC scheme. We note that this can also be achieved by tweaking
the FHE scheme (e.g., by removing rounding operations), but this usually
requires forfeiting existing optimizations for FHE.

Expressiveness throughFlexibility. In order to cope with different FHE schemes
(and different optimizations of the same scheme), the primitive should be gen-
eral enough to accommodate these slight differences; e.g., supporting rings
with different types of moduli, or supporting several rings in the same circuit.
Note that this might conflict with the FHE-Friendliness requirement.

Efficiency through Shared Underlying Computations. To allow the integrity
primitive to benefit from any speed-ups in the implementation of the ring
arithmetic underlying the FHE library, it should be easy to express the primi-
tive’s computation as fundamental ring operations, which are also the lowest
abstraction used by the FHE library (e.g., NTT-optimised multiplication).
Simply forcing the primitive to operate on the same arithmetic structure as
the FHE computation would not necessarily achieve this goal; rather, one
should take care to make a concrete implementation of the primitive take
advantage of the optimised FHE implementation.

Having defined these desirable criteria, we now introduce two families of
integrity primitives that satisfy these criteria, and are thus promising can-
didates for efficient and flexible FHE VC schemes: ring-based zkSNARKs
(Section 4.1), and hardware-backed Trusted Execution Environment (TEE)
(Section 4.2). For both of these primitive families, we analyse their con-
crete complexity and expressiveness, introduce new theoretical efficiency im-
provements, and provide the first open-source (prototype) implementation,
together with an empirical evaluation.
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4.1 Argument Systems over Rings

While there have been many SNARKs over fields, Rinocchio [GNSV21] is the
first SNARK working natively over rings. In particular, in [GNSV21] Ganesh
et al. detail how Rinocchio can be used to prove FHE computations, which
is why we believe it is one of the strongest candidate primitive for practical
FHE integrity.

4.1.1 Analysing Complexity & Expressiveness

Rinocchio produces constant-sized proofs (consisting of 9 elements), and re-
lies on linear-only encodings for security. Rinocchio requires the arithmetic
circuit under consideration to be expressed as a Quadratic Ring Program
(QRP). Let F be an arithmetic circuit with multiplicative depth d over the
ring R with public input indices Iio = 1, . . . , i (corresponding to the client’s
public ciphertexts) and intermediate / private inputs Imid = i+1, . . . ,m (cor-
responding to the server’s inputs and intermediate values). F is encoded as a
QRP as follows: first, we sample a random element ri ∈ A for each gate. For
each k-th value in Iio ∪ Imid, we define a polynomial vk(x) by interpolating,
such that vk(ri) = 1 if the k-th value is a left input to the i-th multiplication
gate, and 0 otherwise. This process is then repeated for wk (encoding right
inputs) and yk (encoding outputs). Finally, t(x) is set to

∏
i(x− ri).

The QRP is then the tuple (t(x), (vk(x), wk(x), yk(x))
m
k=1), where all elements

of the tuple are univariate polynomials over R, with coefficients in A1. For
all k, vk, wk, and yk have degree at most d− 1, and t has degree d, where d
is the number of multiplications in the circuit.

The protocol relies on (probabilistically) checking that t(x) divides v(x) ·
w(x) − y(x), which holds if and only if the values on the wires correspond
to a satisfying circuit. Here, v(x) =

∑
k∈Iio∪Imid

ak · vk(x), where ak ∈ R is
the k-th circuit value. During the protocol, the quotient polynomial h(x) =
v(x)·w(x)−y(x)

t(x) is used; h has degree at most d − 1, and has coefficients in R.
In the following, A∗ = A \ {ri}di=1 is the set of values in the exceptional set
that were not used to define the QRP, and R∗ are the units of R.

We reproduce the Rinocchio protocol in Figure 4.1. In [GNSV21], the pro-
tocol is described using a very terse and abstract syntax, while we use a
more precise notation that more closely matches how one would implement
the protocol in practice; this allows us to make the concrete complexity of
the protocol more explicit. We refer the interested reader to the full paper
[GNSV21] for details.
1For simplicity, we drop the 0-th terms v0, w0, and y0, which by convention correspond to
the public constant input 1 (the unit in R).
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Setup (1κ)

s← A∗; α← R∗; rv, rw ← R∗; ry = rv · rw; β ← R \ {0}
(pk, sk)← E.KGen(1κ)

crs :=
({
E
(
si
)}d

i=1
,
{
E
(
αsi

)}d

i=1
, {E (β(rvvk(s) + rwwk(s) + ryyk(s)))}k∈Imid

, pk
)

vk := (sk, crs, s, α, β, rv, rw, ry)

Provecrs
(
(ak)k∈Imid∪Iio

)
δv, δw, δy ← R∗

h′(x) := h(x) + δvw(x) + δwv(x) + δvδwt(x)− δy

A := E (vmid(s) + δvt(s)) =
∑

k∈Imid

∑d
i=1 akvk,iE

(
si
)
+

∑d
i=0 δvtiE

(
si
)

Â := E (αvmid(s) + δvt(s)) =
∑

k∈Imid

∑d
i=1 akvk,iE

(
αsi

)
+

∑d
i=0 δvtiE

(
si
)

B := E (wmid(s) + δwt(s)) =
∑

k∈Imid

∑d
i=1 akwk,iE

(
si
)
+

∑d
i=0 δwtiE

(
si
)

B̂ := E (αwmid(s) + δwt(s)) =
∑

k∈Imid

∑d
i=1 akwk,iE

(
αsi

)
+

∑d
i=0 δwtiE

(
si
)

C := E (ymid(s) + δyt(s)) =
∑

k∈Imid

∑d
i=1 akyk,iE

(
si
)
+

∑d
i=0 δytiE

(
si
)

Ĉ := E (αymid(s) + δyt(s)) =
∑

k∈Imid

∑d
i=1 akyk,iE

(
αsi

)
+

∑d
i=0 δytiE

(
si
)

D := E (h′(s)) =
∑d−1

i=0 h′
iE

(
si
)

D̂ := E (αh′(s)) =
∑d−1

i=0 h′
iE

(
αsi

)
F := E (β(rvvvmid(s) + rwwmid(s) + rywmid(s)))

=
∑

k∈Imid
E (β(rvvk(s) + rwwk(s) + ryyk(s)))

return π :=
(
A, Â,B, B̂, C, Ĉ,D, D̂, F

)

Verifyvk
(
(ak)k∈Iio

, π
)

parse π as
(
A, Â,B, B̂, C, Ĉ,D, D̂, F

)
vmid,s := E−1(A); vmid,αs := E−1(Â)

wmid,s := E−1(B); wmid,αs := E−1(B̂)

ymid,s := E−1(C); ymid,αs := E−1(Ĉ)

hs := E−1(D); hαs = E−1(D̂)

lβ := E−1 (F ) ; l := rvvmid,s + rwwmid,s + ryymid,s

vio,s :=
∑

k∈Iio
akvk(s); wio,s :=

∑
k∈Iio

akwk(s); yio,s :=
∑

k∈Iio
akyk(s)

p := (vio,s + vmid,s)(wio,s + wmid,s)− (yio,s + ymid,s)

return (vmid,αs = αvmid,s) ∧ (wmid,αs = αwmid,s) ∧ (ymid,αs = αymid,s)

∧ (hαs = αhs) ∧ (lβ = βl) ∧ (p = hst(s))

Figure 4.1: The Rinocchio protocol (adapted from [GNSV21]). Components needed for zero-
knowledge are shown in blue.
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We provide the first analysis of the concrete costs of the Rinocchio protocol.
In Table 4.1, we present the cost of setting up, proving, and verifying a circuit
using Rinocchio, expressed in units of operations over three different rings.
This allows for a fair comparison with the cost of the FHE computation to
be proven, which operates on the same rings. In particular, this comparison
can be made independently of any efficiency improvements to the underlying
ring arithmetic library.

Rinocchio operates on three separate arithmetic spaces:

R: the base ring, which is also the ring used for the computation to be proven.
For FHE, R = Zq[X]/〈XN + 1〉, where q =

∏l
i=1 qi is a product of l primes,

and N is a power of two;

A: R’s exceptional set. For R as above, A = Zq1 , and each element of A can
be embedded in R as a constant polynomial;

C : the encoding space, to which the linear-only encoding E : R → C maps.
In practice, C will be much larger than R, and operations involving elements
of C will be slower than the corresponding operations on R.

Algorithm A×R R+R R×R C + C R× C E (·) E−1 (·)

Compute ≤ 2d−m−1 m+ 1
Prove 6dm 6d(m− 1) m+ 8d− 9 8d
Setup 3m+ d 2m m m+ 2d+ 2
Verify ≤ 3l + 1† ≤ 3l + 3† 9 9

†: for layered circuits (as often used in practice), v, w, and y will be sparse, and the costs here will
be l + 1 operations instead of 3l + 1 (respectively l + 3 instead of 3l − 3)

Table 4.1: Costs (expressed as operations over A, R, C) of the Rinocchio protocol (without zero-
knowledge), for l = |Iio| inputs and outputs andm = |Imid| intermediate/private values.

4.1.2 Improving Encoding Efficiency

In [GNSV21], Ganesh et al. introduce two possible encodings for the cy-
clotomic rings used by FHE. The first one (dubbed “Regev-style” encoding)
encodes each of the N coefficients in Zq by encrypting it into an element of Zn

Q

using a LWE cryptosystem scheme; the parameters of the encoding scheme
are chosen to ensure that the encodings are k-linearly-homomorphic, where
k is determined by the circuit. The second construction (“Torus encoding”)
uses a variant of the TFHE cryptosystem.

The Regev encoding has an expansion factor of N ·n·log2(Q)
N ·log2(q)

= n · logq(Q), as
it encodes each of the N coefficients in Zq as an element of Zn

Q. However,
most FHE implementations will not be able to support a plaintext modulus
of the size of q (typically hundreds of bits), and in practice one would need to
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encode each of the l CRT components individually, leading to an expansion
factor of l · n · logq(Q). Using this encoding will thus slow down the prover
and verifier significantly, as all encodings, decodings, and computations over
the encoding space will be slow.

The TFHE encoding, on the other hand, requires using floating-point arith-
metic to encode and decode, unlike the FHE scheme used for computation.
Additionally, this encoding does not allow us to use the (potentially heavily
optimised) ring arithmetic libraries provided by the FHE library.

Therefore, we propose a new RLWE Regev-style encoding for Rinocchio,
taking advantage of the batching technique commonly used in FHE. For
many FHE schemes, if the plaintext modulus t satisfies the condition t = 1
mod 2N , one can use an efficient encryption that packs N plaintext val-
ues (interpreted as an element of Rt) into a single ciphertext in R2

q . For our
encoding, we take an input in Rq as l polynomials in Rq1 , . . . , Rql (this decom-
position is already used natively by the FHE scheme for efficiency reasons),
and encode each of those polynomials as an element in RQ. The expansion
factor in this case is l·log2(Q)

log2(q)
= l·logq(Q), improving on the Regev encoding by

a factor of N ≥ 210. Using this batching technique imposes the requirement
qi = 1 mod 2N on the ciphertext moduli of the FHE scheme; this condition
is already necessary for some schemes (e.g., RNS-optimised BGV [KPZ21]),
and can be easily satisfied for all other schemes.

Table 4.2 shows the asymptotic complexity of ring operations when using this
new encoding.

Operation A×R R+R R×R C + C R× C E (·) E−1 (·)

Θ(·) Nl Nl Nl log(Nl) NL NL log(NL) NL log(NL) NL log(NL)

Table 4.2: Asymptotic complexity of ring operations (for the batched Regev encoding with Q =∏L
i=1 Qi , see Section 4.1.2)

4.1.3 Implementation & Evaluation

We implemented a prototype of Rinocchio as a template-based C++ library
[Knab], which includes the core protocol, and provides an interface for po-
tential future implementations of efficient encoding functions. Our library
implements Rinocchio generically (such that the protocol can be used with
any FHE library, a user is only required to provide a backend for the under-
lying ring arithmetic), together with a concrete instantiation of the protocol
using the SEAL [Sea] library (version 4.0). For this integration with SEAL,
our implementation relies on the polytools [VK] library, which we extended
as part of this thesis.
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Our implementation has been used by researchers at Intel Labs to investigate
hardware-acceleration of Rinocchio, and we plan to open-source our library
shortly after the publication of this thesis.

By relying on an existing and widely deployed FHE library, we allow practi-
tioners to add integrity protection to their FHE deployments with a minimal
amount of additional dependencies, and we ensure a seamless integration
with the FHE circuit to be proven. Additionally, our implementation of
Rinocchio immediately benefits from any efficiency improvement of the un-
derlying ring operations; for example, our implementation can be hardware-
accelerated using the Intel Homomorphic Encryption Acceleration Library
(HEXL) [Boe+21] (which is a supported backend for SEAL) by simply com-
piling SEAL with the corresponding flag enabled.

4.1.4 Discussion

Despite its native support for FHE-friendly rings, Rinocchio suffers from
limitations that prevent it from being usable for FHE as-is. First, its ex-
pressiveness is limited, as Rinocchio only supports arithmetic circuits over
rings, whereas some FHE operations (e.g., relinearization) use component-
wise rounding operations internally. Rinocchio also only supports a single
ring for a given circuit, whereas some FHE schemes (e.g., B/FV) use as much
as three rings for multiplication [FV12]; while this issue can be circumvented
by using the biggest ring throughout, and emulating modulus switching to
smaller rings, it still worsens Rinocchio’s performance.

Additionally, the soundness of Rinocchio relies on the size of the exceptional
set, which for FHE-friendly cyclotomic rings is |A| = q1 ≈ 260, i.e., Rinocchio
provides around 60 bits of (computational) soundness; in practice, one would
need to use a soundness amplification strategy to achieve a more satisfactory
level of soundness. Finally, Rinocchio is designated-verifier, which may limit
its applicability as a building block in a construction for some applications.

Rinocchio is thus much more FHE-friendly than previous proof or argument
systems, but still struggles to efficiently represent state-of-the-art FHE opti-
mizations natively. Rinocchio is also moderately flexible, but can be coupled
very closely to an efficient FHE implementation to directly benefit from its
optimization.

4.2 Hardware-based Primitives

TEEs are hardware components capable of isolating code running on them
from the rest of the operating system. Code running on a TEE is free from
tampering from other processes, even from the operating system or hypervi-
sor. TEEs are commercially available in the form of commodity hardware,
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provided by all major hardware vendors (e.g., Intel SGX [Sgx], ARM Trust-
Zone [Gea15], AMD SEV [Amd]).

4.2.1 Analysing Complexity & Expressiveness

In the security and privacy literature, TEEs have been used to guarantee two
distinct properties: integrity and confidentiality Integrity is guaranteed by the
isolation of the TEE from the rest of the operating system, and a TEE can
prove to other parties that it executed a specific signed binary by producing
a remote attestation. Despite a few attacks [Mur+20], TEEs are generally
accepted to provide integrity. Confidentiality, on the other hand, is seldom
guaranteed only by the TEE, and usually requires additional hardening by
the TEE user. In particular, most TEEs are very vulnerable to side-channel
attacks, which leak information about data within the enclave to an outside
adversary. A slew of side-channels attacks on TEE [NBB20] point out the
brittleness of their privacy guarantees of TEEs, which has spurred a new line
of research combining FHE (for privacy) and TEE (for integrity).

This combined approach [DG17; Bre+22; Nat+21] makes use of TEEs for
their integrity properties, by running an entire existing FHE pipelines inside
an enclave. This approach also allows for more complex setups with addi-
tional parties, providing different privacy and integrity guarantees for each
party. Since all these works simply embed a FHE pipeline within a TEE, they
are restricted by the enclave’s hardware limitations, which means that they
suffer from heavy performance degradation when a lot of working memory is
required (which is a concern due to FHE’s ciphertext expansion).

Some works using TEE use them as fast secure computation units [TB18;
BMA20]. These works rely heavily on TEEs for privacy, and thus suffer from
the restrictions and concerns outlined above. Other works still [Cop+21;
Wan+19; Sad+19] have explored the use of TEEs as (fast) private computa-
tion modules, but they do not aim to provide computation integrity, and are
thus of limited interest for this thesis.

In this thesis, we do not rely on any data confidentiality guarantees that
a TEE might provide, and instead rely on the much more widely accepted
integrity guarantees2. In particular, we assume that the computing party has
access to a TEE. We follow the transparent enclave model from Tramèr et
al. [Tra+17], which captures this intuition. Conceptually, for a relation R =
{(x,w) | f(x,w) = 1} with an efficiently computable f , one can construct a
zero-knowledge proof protocol as follows: First, the prover and verifier reach
2Technically, the integrity of TEEs hinges on the secrecy of some cryptographic material,
and we do rely on these (signing and attestation) keys remaining secret. However, these
are more protected than the data loaded on the TEE, and require much fewer trust as-
sumptions, as a much smaller portion of the TEE design and implementation needs to be
trusted.
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an agreement on a program that implements f , but does otherwise not output
any other information (e.g., does not leak w). The verifier then loads this
program together with its input x on the prover’s TEE. The prover runs this
program with its own private input w, and attests to the verifier that the
program was run correctly using the partial input x, thereby convincing the
verifier that x is in the language corresponding to R. We note here that
we assume that the verifier uses a separate machine from the prover (i.e., it
cannot recover w by using side-channel attacks), as would be the case in our
setting (where the client and server would not be on the same machine). For
more details, we refer the interested reader to the paper by Tramèr et al.
[Tra+17].

One can see immediately that a TEEs are very flexible primitives, since they
rely on a very generic underlying representation; indeed, any relation that can
be expressed as a program can be proven. In particular, TEEs can cope very
well with non-arithmetic sub-operations in FHE operations (e.g., rounding).

TEEs are also relatively efficient, but only up to a certain point. The only
work (to the best of our knowledge) that investigates running FHE work-
loads on TEEs [Nat+21, Table 4] report a ×2.4 slowdown compared to a
normal CPU, which is consistent with our measurements (see Section 4.2.3).
However, as TEEs encrypt/decrypt memory on paging, paging data in and
out of an enclave incurs a heavy latency penalty [Gje+17]. Additionally,
TEEs have smaller physical memory limits than conventional CPUs, which
means that application requiring large amounts of memory incur significant
overhead when running on TEEs.

4.2.2 Accelerating FHE-in-TEE with Untrusted Hardware

Executing any code inside a TEE incurs a slowdown (due to reduced com-
putational power and memory), especially in the case of FHE computations,
that are typically compute- and memory-intensive. To alleviate this slow-
down, we propose a new method to accelerate FHE computations inside
TEEs by taking advantage of faster (but untrusted) hardware (e.g., a vanilla
untrusted CPU, a CPU with specialised vector instructions repurposed for
FHE [Boe+21], a GPU accelerator for FHE [Oze+21], or even a dedicated
hardware accelerator).

The key insight to our improvement is that both the TEE and the untrusted
hardware are on the side of the (malicious) server. Therefore, the server’s
input does not need to be protected from the server, and can be stored
on the server’s own untrusted hardware; the client’s inputs are only avail-
able in their encrypted form, and can thus also be stored outside the en-
clave. This insight allows us to devise a protocol for verifiably outsourcing
certain FHE operations. In order to do this efficiently, we rely on a very
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lightweight, information-theoretic argument of equality, based on the gener-
alised Schwartz–Zippel lemma over rings:
Theorem 4.1 (Generalised Schwartz–Zippel Lemma over Rings [Bis+18; GNSV21])
For a ring R, let f : Rn → R be a n-variate non-zero polynomial, let A ⊆ R
be a finite exceptional set, and let deg(f) denote the total degree of f . Then:

Pra⃗←An [f (⃗a) = 0] ≤ deg(f)
|A|

For a given computation, we encode the expected result in one polynomial (f),
and the actual result computed on untrusted hardware in another polynomial
(g). The trick for efficiency, then, is to compute the compute and compare
f(a) and g(a) faster than computing the full representation of g in the first
place.

Consider, for example, the tensoring operation, which is the most com-
putationally expensive part of FHE multiplication (for the B/FV, BGV,
and CKKS schemes). In the following, we will interpret a ciphertext ct =
(ct0, . . . , ctk−1) ∈ Rk

q as a polynomial of degree k − 1 over Rq, where cti is
the i-th coefficient.

The tensoring operation takes as input two ciphertexts ct = (ct0, ct1), ct′ =
(ct′0, ct′1) ∈ R2

q , and outputs cout = ct·ct′ = (ct0·ct′0, ct0·ct′1+ct′0·ct1, ct1·ct′1) ∈
R3

q . Now, evaluating the expected result ct · ct′ at a random point a ∈ A can
be done efficiently as follows:

f(a) := (ct · ct′)(a) = ct(a) · ct′(a) = (ct0 + a · ct1) · (ct′0 + a · ct′1)

Evaluating the untrusted result ctout at this same point can be done by using
Horner’s rule:

g(a) := ct′′(a) = ct′′0 + a · (ct′′1 + a · ct′′2)
After checking that f(a) = g(a), we know that ct · ct′ = ct′′ with high
probability (for R = Zq1·...·ql [X]/f [X], we have |A| = q1 ≈ 260, i.e., 60 bits of
soundness). While computing the result has a concrete complexity of 1 R+R,
4 R×R, verifying the result as outlined above only requires 4 A×R, 4 R+R,
1 R×R.

This approach can also be extended as follows to verify k tensoring operations
at the same time. Let

f(a1, . . . , ak) :=

k∑
i=1

(cti · ct′i)(ai) =
k∑

i=1

(cti,0 + ai · cti,1) · (cti,0 + ai · ct′i,1),

and define

g(a1, . . . , ak) :=
k∑

i=1

ct′′i (ai) =
k∑

i=1

(ct′′i,0 + ai · (ct′′i,1 + ai · ct′′i,2)).
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Computing k tensoring operations has a concrete complexity of

k R+R, 4k R×R,

while verifying the result by computing f (⃗a) and g(⃗a) has a complexity of

4k A×R, (6k − 2) R+R, k R ×R .

By trading expensive R-R multiplications for cheaper R-R additions and A-R
multiplications, we are able to achieve a non-negligible speed-up, which we
quantify in the next section.

We can view our protocol as a much more efficient, non-zero-knowledge ver-
sion of Rinocchio; indeed, Rinocchio also uses Theorem 4.1, but requires
significantly more protocol machinery in order to achieve zero-knowledge.
In addition, Rinocchio offers roughly log2(q1) ≈ 60 bits of computational
soundness (and thus requires a soundness amplification strategy), while our
protocol offers log2(q1) bits of statistical soundness, and can therefore provide
a satisfactory level of security by itself.

We note that this optimization is similar to the Slalom framework by Tramèr
and Boneh [TB18], which offloads matrix multiplications (pover unencrypted)
values to untrusted hardware by using Freivalds’ algorithm. Slalom relies on
the TEE both for integrity and data confidentiality and only supports matrix
multiplication, whereas our protocol does not require confidentiality of the
data stored on the TEE, and can handle arbitrary polynomial computations.

4.2.3 Implementation & Evaluation

We implemented our framework [Knaa] based on the SEAL library [Sea] and
the OpenEnclave SDK [Oe], which allows practitioners to quickly port ex-
isting FHE applications onto the TEE backends supported by OpenEnclave
(including Intel SGX). We also implemented outsourcing and verification pro-
cedures for FHE as described above, which can be used as faster replacements
for operations in existing FHE applications.

To the best of our knowledge, the only other work leveraging FHE and TEEs
to achieve integrity is CHEX-MIX [Nat+21], which provides a high-level de-
scription on making the SEAL library run on Intel SGX, but does not provide
an open-source implementation, and does not make use of the computational
power of the untrusted hardware to accelerate the computation.

Table 4.3 shows benchmarks for our verification algorithm on Intel SGX. We
first note that multiplication on untrusted hardware (without any further
optimizations) is roughly 2 times faster than on the TEE (on our machine),
which is consistent with previous reports from the literature [Nat+21]. The
cost of transferring ciphertexts in and out of the enclave (“Setup”) are on the
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order of (≈ 104 µs), and grows very moderately as the number of offloaded
ciphertexts increases (for 32 ciphertexts, being 2 orders of magnitude faster
than either computing on untrusted hardware or verifying on the TEE).

Verifying the result of a multiplication is consistently ×1.4–2.5 times faster
than performing the computation inside the TEE (×1.8–2.5 for batched ver-
ification); batched verification offers a speedup of around 20% compared to
the non-batched version (starting at k = 8 already).

For any FHE application, we can thus offload a computation to the un-
trusted hardware while verifying the result of the previous computations in-
side the TEE. By streamlining computation in this manner, practitioners get
a hardware-backed guarantee for the integrity of their FHE computation at
a negligible cost compared to an unprotected run.

k
Multiplication Multiplication Verification Batched Verif. Setup

(TEE) (Untrusted) (TEE) (TEE) (TEE ↔ Untr.)

1 7.40× 104 3.52× 104 2.91× 104 2.93× 104 1.08× 104

8 5.91× 105 2.85× 105 4.15× 105 3.21× 105 1.37× 104

32 2.36× 106 1.15× 106 1.64× 106 1.30× 106 2.30× 104

45 3.34× 106 1.61× 106 2.28× 106 1.82× 106 2.79× 104

Runtimes in µs, averaged over 5 runs. FHE parameters: N = 212 , BGV scheme with a 109-bit q (3
moduli, SEAL default parameters for κ = 128). Untrusted hardware: Intel Core i5 CPU (1.60GHz).
TEE: Intel SGX.

Table 4.3: Runtimes of k sequential multiplications on a TEE versus runtimes of multiplications on
untrusted hardware with verification on a TEE.

4.2.4 Discussion

Due to their very expressive internal representation, TEEs are very FHE-
friendly and flexible (the only hurdle is porting an FHE library to work with
the reduced standard library available on the TEE). Contrastingly, using
TEEs by themselves does not allow us to take advantage of improvements in
FHE libraries. This is remediated by our FHE-in-TEE optimization, which
allows us to only perform verifications inside the TEE, while offloading heavy
computations to faster hardware.

While there have been significant improvements in the space of integrity
primitives for FHE (both cryptography-based and hardware-based), existing
primitives still suffer from a lack of expressiveness and/or efficiency, which
prevents them from being of practical use at the moment. In addition, these
integrity primitives are only used to prove that a certain FHE circuit is satis-
fied (see Chapter 3). As we will see in Chapter 5, this does not offer enough
guarantees in the presence of a malicious adversary for realistic FHE set-
tings.
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Chapter 5

Realistic Security Notions for FHE

As studied in Chapter 3, there is a variety of FHE approaches with different
security and functional guarantees. In this chapter, we first analyse the re-
quirements of real-world FHE applications, which we compare and contrast
them with the guarantees given by existing approaches. We show that prior
work falls woefully short of achieving these properties. We also show con-
crete attacks against the security of each of these deployment scenarios, even
if they are protected by state-of-the-art verifiable computation schemes. We
also show two complete key-recovery attacks that demonstrate the shortcom-
ings of existing integrity frameworks for FHE. We formulate these attacks
on the level of generic constructions, showing that these are not issues with
specific instantiations, but rather a fundamental mismatch between the re-
quirements of FHE deployments and the notions of integrity supported by
state-of-the-art approaches. Finally, we formally define stronger and more
expressive integrity notions for FHE, which naturally generalise existing def-
initions, and show that schemes that satisfy these new notions are secure
against our attacks.

5.1 FHE Applications in Practice

FHE applications can be broadly categorised by the amount of hidden inputs
they require. Firstly, an application can have inputs only from one party
(e.g., a client provides all ciphertexts and a public circuit, and asks a more
powerful server to evaluate this circuit on this input), and we will study such
applications in Section 5.1.1. For a second class of applications, some inputs
may be private; either the circuit could be public, but some inputs would be
provided by the server, or all inputs may be public, but the server applies a
secret circuit to them, or both some inputs and the circuit could be unknown
to the client. Such applications will be studied in Section 5.1.2.
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5.1.1 Outsourced Computation

In the outsourced computation setting, a client is in possession of its (private)
inputs and a circuit F , but it wants to offload the computation of this circuit
to a more powerful server. To ensure privacy, the client first encrypts its data
using FHE, and sends its ciphertext together with the circuit F to the server.

This setting is the most studied one in the VC literature and for FHE in-
tegrity (see Chapter 3 for a more complete overview). However, outsourced
computations only covers a tiny subset of FHE use cases, due to the slowdown
and limitations introduced by FHE. Indeed, in an overwhelming majority of
cases, it is much faster to compute over plaintexts than to encrypt and send
all inputs, wait for the answer from the server, and to then decrypt (and
potentially verify) this result. By using FHE, the client also needs to make
sure that the computation can be expressed as an arithmetic circuit over Zt,
and forfeits the use of conditional control flow and loops, which reduces the
set of useful applications even further. For this reason, most systems using
FHE are multi-party systems, and take advantage of FHE to achieve privacy
of a party’s input with respect to other parties.

5.1.2 Secure Function Evaluation

Most FHE applications in practice are concerned with the evaluation of a
circuit on inputs provided by different parties. This computation can be per-
formed by one party (e.g., the server in a typical client-server setting), or
by each party independently (e.g., for federated learning). Before studying
the biggest families of use cases for such multi-party FHE deployments in
the following paragraphs, we would first like to highlight a particularity of
the guarantees given by the VC literature (see Chapter 3): these approaches
guarantee circuit satisfiability, i.e., they guarantee that for the circuit f and
for the client input x, there exists a w such that (after verification and de-
coding) y = f(x,w). We show how to exploit this lack of guarantees about
w to mount a variety of application-specific attacks.

Private Information Retrieval (PIR)

(Single-server) PIR is typically a two-party application, and allows a client
to retrieve an item from a server’s database, without revealing which item
was retrieved. The database can either be private to the server, or it could
have sent by the client to the server during a one-time setup phase. The
most efficient (single-server) PIR protocols are built using FHE [Ang+18;
GH19; PT20; Ali+21; MCR21], following Kushilevitz and Ostrovsky’s initial
construction to realise PIR with a HE scheme [KO97].

Because the client will not have access to the full database at the time of mak-
ing a request (either because the database is private to the server, or because
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the client offloaded it first), the client typically knows only the ciphertext en-
crypting its query, while the server knows both the client’s encrypted query
and the database. The circuit used to privately retrieve a record is public
and does typically not depend on a particular use case, but follows one of the
state-of-the-art approaches.

For PIR, the entire database must be scanned and (homomorphically and
privately) compared to the client’s query in order to preserve privacy; this
makes PIR computationally expensive in practice, and a malicious (even ra-
tional) server would thus have an incentive to save some of this computation.
For example, by choosing its input to circuit after receiving the client’s query,
a server could make it appear to the client as if the server database consisted
only of the client’s query, or it could claim to have a reduced (or even empty)
database in order to save some computation. The server could also use dif-
ferent databases for different user queries, whereas the user would expect
the server to use the same database for an extended period of time. Both
of these attacks could be thwarted either by having the server (privately)
committing to its database at the beginning of the protocol, or by the server
proving that an amount of computation equivalent to that needed to match
a query against a database of a certain size; in the following, we will call such
a mechanism a Proof-of-Computation1. The latter attack can be thwarted
using the commitment mechanism as well.

Private Set Intersection (PSI) and Private Set Union (PSU)

In PSI/PSU, each party has a set of records, and the protocol allows a party
to learn the intersection or the union of its set with that of the other parties.
For this use case, some of the most efficient systems rely on FHE (especially
in the asymmetric case, where one set is much larger than the other) [CLR17;
Che+18; Con+21; Tu+22].

PSI/PSU applications have very similar characteristics as PIR applications.
Firstly, they usually involve only two parties, for example as in the Microsoft
Edge Password Monitor [Lau+21], where the client’s set is composed of a
user’s saved passwords in their browser, and the server set is a database of
compromised credentials. Similarly, there is usually only one circuit, which is
publicly known. Finally, the attacks against PIR with a malicious server have
a direct analogue for PSI/PSU applications, and the same countermeasures
(input commitment and proof-of-computation).
1“Computation” here is to be understood as computational effort; we refrain from using
terms related to the semantically-loaded “Proof-of-Work” as used in the blockchain com-
munity.
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Machine Learning (ML)

Privacy-preserving ML is a major application for FHE in practice, for example
in the biomedical sector [Wan+18]. The setup and characteristics of the
system depend on whether the application aims to evaluate an existing model
(inference), or whether it aims to train a new one. However, ML applications
make heavy use of approximate FHE, as both ML inference and training can
be implemented much more efficiently using floating-point representations.

Inference. In this type of system, the server holds a ML model, and the
client holds several private inputs. The server usually wants its model to
remain private to preserve the intellectual property of the model owner, and
to prevent the model from being stolen. The client’s input is also private,
and is sent in encrypted form to the server. FHE has been used for ML
inference for a wide variety of model architectures and use cases [AEH15;
GB+16; WNK20; Iez20; Con+22; Lee+22].

We see here again that ML inference is a two-party setting, with private
inputs from both parties. The circuit that evaluates the model may be either
public, if the model owner is willing to disclose the topology of its model, or
private otherwise. However, the client still needs to receive some information
about the depth of the network (in order to use the right FHE parameters),
and the topology of a network by itself usually discloses little information
about the model itself, which is primarily determined by the exact model
weights. For these reasons, the circuit is usually assumed to be public in the
literature, and there is only circuit per model that is evaluated repeatedly for
different client inputs.

A malicious server could try to save on computation by claiming to evaluate
a deeper and more complex model than what it actually evaluates (and bill
the client accordingly); such an attack would be defeated either by input
commitment or by providing a proof-of-computation. The server could also
use different machine learning models for different queries, which would be
prevented using input commitments.

Training. Related to ML inference, ML training is often achieved by fed-
erated learning; several parties each hold their private datasets, and they
collaboratively train a join model incrementally. Typically, in these systems
each party performs some FHE computations on its private data, before ex-
changing the result with other parties (either through a central aggregation
server, which also evaluates a circuit, or by using a MPC protocol). FHE
has been used extensively for ML training for a wide variety of models and
applications [Kim+18; WNK20; Iez20].

In this setting, the circuit is public and reused at every iteration of the train-
ing, and each party needs to cope with private inputs from other parties.
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Similarly to the ML inference setting, a malicious adversary could misrep-
resent the amount of computation it has performed, or it could switch out
its training dataset in different iterations; these attacks would be prevented
by using input commitment or proofs-of-effort, respectively by using input
commitment. Another attack is enabled by the lack of guarantees on the
circuit’s inputs: by using inputs with disproportionate sizes, a malicious par-
ticipant could poison the model being trained, preventing it from converging,
or forcing it to perform poorly for some inputs. Existing VC schemes only
provide a very coarse check, guaranteeing that server inputs lie in Rq, which
is not very useful in practice.

Generic Secure Function Evaluation

FHE is also used in a variety of multi-party use-cases to protect the pri-
vacy of each party’s inputs. These applications range from Vehicular Ad-Hoc
Networks (VANETs) [Sun+20], securing drone systems [SAK17] and aerial
photography [SAK17], for biometric data processing [TBS14; ABS15], and
for the defence and intelligence sector [Geu18]. The exact characteristics
for other multi-party FHE use cases that do not fit our classification above
depend on the specific setting; however, we believe that all the guarantees
outlined above are generally desirable to achieve satisfactory integrity guar-
antees for a wide variety of use cases.

5.1.3 Characteristics and Desirable Guarantees for Real-World FHE

Table 5.1 summarises the most common families of FHE applications, well-
known attacks against the correctness of the application, and guarantees that
would prevent these attacks.

We first see that most FHE applications are multi-party (and usually two-
party), and that they mostly use a single public circuit (or few of them), which
are evaluated repeatedly on different inputs. Hence, circuit privacy is very
often not required, but support for context-hiding is paramount. We also note
that the usage of a single circuit may make an amortised VC scheme viable,
as an expensive pre-processing phase for one circuit can be amortised over
many repeated evaluations (besides, FHE by itself also requires a somewhat
expensive pre-processing phase, due to the generation of public and evaluation
keys, and the potential first encryption of the server’s inputs).

These setups also question the need for public delegatability and public verifi-
ability for many FHE use cases: both notions already requires a lot of trust in
the setup-party (which generates the secret keying material), and delegators
won’t be able to decrypt result by themselves. We note that allowing for
(variants of VC schemes) without support for public delegatability and/or
verifiability may lead to more efficient primitives, without compromising the
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Application Cont.-
Hiding

Func.
Priv.

Multi-
Circ.

Inp.
Com. PoC Well-

Form.
Appr.
Comp.

Outsourced Computation   
Private Information Retrieval     
Private Set Intersection/Union     
Machine Learning Inference      
Machine Learning Training      
Secure Function Evaluation        
Cont.-Hiding : context-hiding is desirable, i.e., an adversary does not learn additional information
about the function’s inputs from its outputs, even if it holds the secret key;

Func. Priv. : function privacy is desirable, i.e., the client does not learn the function f ;

Multi-Circ. : the application is multi-circuit, i.e., it routinely switches between many different cir-
cuits, instead of using a few circuits throughout;

Inp. Com.: the application benefits from having other parties have to commit to their inputw;

PoC: the computing party provides a proof-of-computation, i.e., it proves that it expended a com-
putational effort comparable to the effort needed to evaluate the circuit;

Well-Form.: the application benefits from well-formedness checks on inputs;

Appr. Comp.: the application benefits from using approximate computation.

Table 5.1: Characteristics and desirable guarantees for real-world FHE applications.

utility of a broad class of FHE applications. Therefore, we focus on pri-
vately verifiable VC schemes when sketching more practical constructions in
Chapter 8, but we present our generic constructions and prove their security
generally, without choosing public or private verifiability.

Many attacks against the correctness of FHE applications can be thwarted
by using input commitments, proofs-of-effort, and well-formedness checks on
inputs. Approximate FHE schemes are also used often in practice, and their
support is therefore a desirable property for a VC scheme. Finally, we note
that FHE is (due to its round and communication-efficiency) is usually used
in low-interaction environments (with plenty of opportunities to batch multi-
ple messages together); a desirable and realistic and FHE-friendly VC scheme
would therefore be a non-interactive as possible, and succinct. In the follow-
ing section, we will now show that unfortunately, existing integrity notions
do not cover these desirable guarantees.

5.2 Shortcomings of Existing Notions

In the previous section, we have shown that realistic FHE applications are
vulnerable to attacks on their correctness, even when protected with state-of-
the-art verifiable computation. However, the gap between theory and practice
in existing FHE integrity approaches is not only devastating for correctness,
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but is also directly detrimental for privacy. In this section, we show two
complete key-recovery attacks against a generic FHE scheme protected with
state-of-the-art VC against a realistic adversary that is slightly stronger than
what was considered in the VC literature. In particular, these attacks are
black-box with respect to the FHE and VC scheme, as long as the FHE scheme
is only IND-CPA-secure (which is the case for all modern FHE schemes), and as
long as the VC scheme is built using the paradigms introduced in Section 3.1.

5.2.1 Key-Recovery Attacks against VC-protected FHE

In the FHE literature, attacks against FHE have been known for a long time,
indeed since the very first generation of schemes. Already in 2012, Zhang
et al. [ZPS12b] showed a complete key recovery attack for Gentry’s original
scheme in a realistic outsourced computation scenario. In parallel, Loftus et
al. [Lof+12] presented key recovery attacks (in the CCA1 setting) against this
same scheme. Later, Zhang et al. [ZPS12a] presented another key recovery
attack against similar FHE schemes. Chenal and Tang [CT15] continued
this line of research by presenting CCA1 key-recovery attacks against newer
schemes (BV, BGV, GSW).

Later, Chillotti et al. [CGG16] presented several generic reaction attacks on
FHE deployments; in essence, whenever the client reacts after a faulty result
received from the server, it provides an oracle that a malicious adversary could
exploit to recover information about the client’s plaintexts. In particular,
when using a classical (unprotected, i.e., only IND-CPA-secure) FHE scheme,
a client will have no way to check whether a ciphertext is malformed, and
will thus have to first decrypt it. However, if the resulting plaintext has
been tampered with in an unexpected manner by the server, the client might
react differently, thereby leaking information about the plaintext, but also
potentially about the secret key. One common countermeasure outlined by
these papers is to use VC schemes in order to guarantee security in a malicious
setting (beside not implementing a decryption oracle in the first place, which
is a very strong requirement for FHE applications).

However, the strongest adversary model assumed in the VC literature consid-
ers adversaries with access to a verification oracle only, whereas in practice,
it is likely that an adversary would have access to a decryption oracle. Ad-
ditionally, using the VC schemes proposed in the literature is not enough to
protect privacy against these stronger adversaries, as we show in the following
two attacks:

Standalone Key-Recovery Attack against VC-protected FHE

We first recall the key recovery attack against the BV scheme from Chenal and
Tang [CT15], which we will then trivially extend to attack a VC-protected
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scheme. In BV, decryption is performed as Decsk(ct) = [ct0 + ct1 · sk]t, where
the inner operations are performed over Rq (see Definition 2.2 for details).
For a suitable choice of t > maxe←χ (|e|), by trying to decrypt ct = (0, 1),
one trivially recovers the secret key Decsk(ct) = [0 + 1 · sk]t = [sk]t = sk. For
the case where t does not satisfy the condition outlined above (e.g., t = 2),
the attack requires additional decryption queries; we refer to [CT15] for the
full details.

Attack 1. Key-Recovery Attack against VC-protected FHE (Standalone) Let VC
be any Compute-then-Prove VC scheme as defined in Section 3.1.5 instanti-
ated with the BV cryptosystem (e.g., the non-interactive version of the VC
scheme from [Boi+21, Section 3.2]). We need not specify the proof system
used for proving, as the attack uses it as a black-box.

By trivially porting the attack against IND-CCA1 from [CT15] to the VC
setting, we can construct the following adversary A against Priv for VC.

AKGen,Dec
1 (pk)

pkid ← OKGen(id)

cx := (0, 1)

(σx, τx) := (cx, cx)

σs = (cy, π)← Computepkid(σx)

s← ODec(σs, τx)

x0 := 0; x1 := 1

return x0, x1

AKGen
2 (σ̂, τ̂)

x̂ := Decs(σ̂)

return x̂ = x1

For favourable choices2 of t, the adversary recovers the secret key as s (and
therefore wins the game) if and only if ODec(σs, τx) does not return ⊥, i.e.,
if Verifypkid(σs, τx) = 1. As σs = id(σx), this will indeed be the case by the
completeness property of the proof system. We note here that for this scheme,
there is no function-specific secret key skf , and decryption only requires the
FHE secret key sk.

The reason that this attack works is that VC schemes built using the Compute-
then-Prove paradigm only guarantee that the output σy is the evaluation of
the circuit on the input σy, but does not offer any guarantees on the well-
formedness of the ciphertexts in σx. While the choice of the identity function
for f makes it trivial to propagate a malformed ciphertext from f ’s inputs to
its output, we note that can be done just as easily for more realistic circuits.
For example, consider the circuit f(x1, w2, w3) := 〈x1, w2〉+w3 (where the in-
ner product 〈·, ·〉 is computed using one multiplication and repeated rotations
2The attack can be extended to handle unfavourable choices of t, at the cost of additional
queries to ODec, see [CT15] for details.
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and additions); such a circuit could for example implements a matrix-vector
multiplication. Given a fixed x1 by the client, the adversary could choose
w2 = 0 and w3 as σs above, prove that f(x1, w2, w3) = σs, and recover the
secret key by querying its decryption oracle.

Key-Recovery Attacks against VC-protected FHE using Evaluation Keys

Attack 1 uses an obviously invalid ciphertext to recover the private key, which
could easily be detected. However, key-recovery attacks can take also take
advantage of the evaluation keys provided to the server. For FHE, an evalu-
ation key is an encryption of a plaintext related to the secret key under this
same secret key, which allows performing ciphertext maintenance operations
(e.g., relinearization, key-switching, bootstrapping). Given access to a de-
cryption oracle, an adversary can decrypt one of these evaluation keys, and
recover the secret key.
For example, Attack 2 shows such an attack on the BGV scheme protected
by a Compute-then-Prove approach.

Attack 2. Key-Recovery Attack against VC-protected FHE (Evaluation Key) Let
VC be a generic Compute-then-Prove VC scheme for BGV (e.g., the non-
interactive VC scheme from [Boi+21, Section 3.2]). We recall that BGV
[BGV14] uses the relinearization key rk = (−(a · s + t · e + s2, a), which is a
valid encryption of s2 under s.

AKGen,Dec
1 (pk)

pkid ← OKGen(id)

cx := pk.rk

(σx, τx) := (cx, cx)

σs2 = (cy, π)← Computepkid(σx)

s2 ← ODec(σs, τx)

s := GetSquareRoot(s2)

x0 := 0;x1 := 1

return x0, x1

AKGen
2 (σ̂, τ̂)

x̂ := Decs(σ̂)

return x̂ = x1

GetSquareRoot can be implemented efficiently by applying the inverse NTT
transform, finding the square root modulo qi of each component (e.g., by
using the Tonelli-Shanks algorithm), and then applying the NTT transform
to recover s.

One could argue that the VC scheme used in Attacks 1 and 2 was too weak,
and that a VC scheme achieving the stronger context-hiding property for non-
deterministic computations may have thwarted this attack. As exposed in
Chapter 3, the context-hiding property gives the two following guarantees:
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(a) No information on (x,w) can be inferred from τx, sk, skf , and σy.

(b) No information on w can be inferred from τx, sk, skf , σy, and σx.

Context-hiding thus guarantees that given access to the secret keys and to the
output of the computation, an adversary is not able to infer information about
the inputs (e.g., by analysing the noise). These guarantees are orthogonal to
the attacks outlined above, and do therefore not protect against key-recovery
attacks per se. We summarise these three settings in Figure 5.1:

(a) Figure 5.1a shows a setting where Alice sends her encrypted input to
the server, which evaluates the circuit and forwards the result to Bob.
Even if Bob is malicious, he should not be able to recover anything
about x and w that it could not recover by knowing y.

(b) Figure 5.1b shows a typical client-server secure function evaluation sce-
nario, where Alice also takes on the role of decryptor. Here, a malicious
Alice should not be able to learn any additional information about the
server’s input w.

(c) Figure 5.1c shows the same client-server interaction, but here Alice
functions as a decryption oracle for the server, and a malicious server
should not be able to later distinguish between two encryptions of dif-
ferent plaintexts. In particular, the server should not be able to recover
Alice’s secret key.

S(w)

A(x) Bsk,skf

σx σy

τx

(a)Bsk,skf (τx, σy) ̸⇒ (x,w)

S(w)

Ask,skf (x)

σx σy

(b)Ask,skf (τx, σy, σx) ̸⇒ w

S(w)

A(x)

σx σy y

(c) SDec(σx) ̸⇒ sk

Figure 5.1: Guarantees given by context-hiding (Figures 5.1a and 5.1b), and by input privacy in the face
of decryption oracles (Figure 5.1c). Malicious parties are shown in red .

We have thus seen that existing integrity notions for FHE do not provide the
functional guarantees required for vast classes of FHE applications in realis-
tic settings. In addition, existing notions and generic constructions do not
even guarantee input privacy against realistic malicious adversaries. In order
to remediate this issue, we now formally define new integrity notions that
capture the requirements of modern FHE, and provide generic constructions
that achieve them in the next sections.
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5.3 Integrity Notions for Real-World FHE

The attacks presented in Sections 5.1 and 5.2 are generic and do not rely on
any specific concrete constructions; rather, they exploit fundamental short-
comings in the integrity notions that VC schemes in the literature aim to
achieve. In order to generically defend against such attacks, we strengthen
and extend the unified VC notion presented in Chapter 3 to enforce robust-
ness in the face of malicious adversaries with access to decryption oracles,
and to require more comprehensive security guarantees.

5.3.1 Property 1: Maliciously-Secure VC against Decryption Oracles

The first property we introduce is maliciously-secure Verifiable Computation
with decryption oracles, which captures realistic adversaries for real-world
FHE deployments, and is generally desirable regardless of the specific FHE
application.

Formally, a VC-CCA1 scheme is a VC scheme that satisfies the following defi-
nition of input privacy:

Correctness. Correctness as defined for VC schemes in the literature (Def-
inition 3.2) de facto excludes approximate FHE schemes, which have been
used in a considerable number of systems (particularly for machine learning
applications).

Definition 5.1 (Correctness for Non-Deterministic and Approximate Computations)
Correctness guarantees that an honest verifier will always accept a result
computed by an honest worker. More formally, for all functions f , and for
all x,w in the domain of f :

Pr


Verifyk(τx, σy) = 1 ∧∥∥∥Decodesk,skf (σy, w)− f(x,w)

∥∥∥ ≤ ε

∣∣∣∣∣∣∣∣∣∣
(pk, sk)← Setup(1κ)

(pkf , skf )← KGen(f)

(σx, τx)← ProbGenkey(x)

σy ← Computepkf (σx, w)

 = 1,

where ‖·‖ is a scheme-specific norm, and ε is a scheme-specific upper bound
on the decoding error (which may depend on f , pk, pkf , or other quantities
of the scheme).

Definition 5.1 naturally generalises deterministic computations (w = ∅) and
exact computations (ϵ = 0).

In addition, some applications also require that their inputs conform to some
checks, e.g., that they lie in some numerical range. No VC scheme in the
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literature supports this functionality. Therefore, we define an even stronger
correctness notion, by requiring that for in addition to a function f , correct-
ness requires a predicate Φ : (x,w) 7→ 0/1, which encodes such checks. The
requirement for correctness with input checks thus becomes:

Pr


Verifyk(τx, σy) = 1 ∧

Φ(w, x) = 1 ∧∥∥∥Decodesk,skf (σy, w)− f(x,w)
∥∥∥ ≤ ε

∣∣∣∣∣∣∣∣∣∣
(pk, sk)← Setup(1κ)

(pkf , skf )← KGen(f)

(σx, τx)← ProbGenkey(x)

σy ← Computepkf (σx, w)

 = 1,

While such checks could in principle be incorporated into the function f , this
would limit us to predicates expressible as arithmetic circuits. We therefore
express them separately, as they might also be implemented using a separate
mechanism.

Input Privacy. We now strengthen the definition of input privacy to hold in
the face of adversaries with access to a decryption oracle.

Definition 5.2 (PRIV-CCA1)
A scheme VC is PRIV-CCA1-secure (i.e., provides CCA1 input privacy) if the
advantage of any PPT adversary A (defined as in Definition 3.5 in the game
ExprPriv[A](1κ) is negligible:

ExprPRIV-CCA1
b [A](1κ)

(pk, sk)← Setup(1κ)

(x0, x1)← AKGen,ProbGen,Dec
1 (pk, 1κ)

(σb, τb)← ProbGenkey(xb)

b̂← AProbGen
2 (pk, σb, τb)

return b = b̂

OPRIV-CCA1
Dec (τx, σy)

b← Verifykey(τx, σy)

if b = 0 :

return ⊥
else :

y ← Decodesk,skf (σy)

return y

OPRIV-CCA1
KGen (f) // Only queried once

(pkf , skf )← KGenpk(f)

return pkf

OPRIV-CCA1
ProbGen (x)

(σx, τx)← ProbGenkey(x)

return (σx, τx)

Security. Similarly, we redefine VC security to hold in the presence of a
malicious adversary with access to a decryption oracle:
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Definition 5.3 (VER-CCA1)
A VC scheme is VER-CCA1-secure if the advantage of any PPT adversary A
in the following game ExprVer[A](1κ) is negligible:

AdvVer[A](κ) = Pr
[
ExprVer[A](1κ) = 1

]
= negl(κ)

Here, OKGen, OProbGen, and ODec are as in Definition 5.2.

ExprVER-CCA1[A](1κ)

(pk, sk)← Setup(1κ)

x← AKGen,ProbGen,Dec
1 (pk)

(σx, τx)← ProbGenkey(x)

(f, σy)← AKGen,ProbGen
2 (σx, τx)

b← Verifyk(τx, σy)

return (b = 1) ∧ (∄w : σy = Computepkf (σx, w))

Contrary to Definition 3.4, we modify the winning condition of the adversary
to σy = Computepkf (σx, w)), which allows us to support approximate com-
putations as well. For exact computation, we recover the previous definition
by observing that σy = Computepkf (σx, w))⇒ Decodesk,skf (σy) = f(x,w).

Context-Hiding. A vast majority of FHE use cases require inputs from mul-
tiple parties, and it is thus paramount that a VC scheme that seeks to be
general offers support for private inputs of multiple parties. This excludes
most VC schemes in the literature, and leaves only the approach of Bois et
al. [Boi+21].

The definition of context-hiding for non-deterministic computation intro-
duced in [Boi+21] (see Definition 3.6) is tailored for VC schemes with public
verifiability. In particular, property (a) in Definition 3.6 only makes sense if
the scheme is publicly verifiable, and if any party other than the encryptor
is involved in the protocol. This is not the case for many client-server FHE
applications (e.g., PIR, PSI/PSU, ML inference), and we can thus define a
weaker notion of context-hiding that captures this setting by only considering
the case (b) of Definition 3.6:

Definition 5.4 (server context-hiding [FNP20; Boi+21])
Formally, server context-hiding is defined using the same simulators as in
Definition 3.6, except for Sτ simulators. A VC scheme is server context-hiding
if there exist efficient simulator algorithms S1, S2 and S3 as in Definition 3.6.

While very useful in deterministic computations, computation integrity gives
little guarantees for computations with inputs from multiple parties. Indeed,
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for a client with input x in a multi-party application, existing VC schemes
only guarantees that there exists an input w such that the result y satisfies
y = f(x,w), but gives no guarantees about w. As we explored in Section 5.1,
many FHE use cases in practice require additional guarantees, which we
outline in the following.

5.3.2 Property 2: Maliciously-Secure VC with Input Commitment

For applications with repeated queries and with the requirement that the
same circuit and the same inputs from other parties be applied each time,
input commitment is desirable. To the best of our knowledge, input commit-
ment is not supported by most of the existing VC schemes; in [FNP20] Fiore
et al. use a Commit-and-Prove SNARK internally to build their VC, but no
mention of using it to commit to some inputs before a protocol run is made.

Formally, we define this input commitment as a forgery game, i.e., it is un-
feasible for an adversary to come up with a function f , an input x, and two
different outputs w 6= w′ such that the output of the computation with w
and the computation with w′ both pass the verification check:

Definition 5.5 (with Input Commitment)
Let VC be a Verifiable Computation scheme. VC provides input commitment
if, for any PPT adversary A, the probability that the following experiment
returns 1 is negligible.

ExprCOM[A](1κ)

(pk, sk)← Setup(1κ)

(x,w,w′)← AKGen,ProbGen,Dec(1κ, pk)

(σx, τx)← ProbGenkey(x)

σy ← Computepkf (σx, w)

σ′
y ← Computepkf (σx, w

′)

b← Verifykey(τx, σy)

b′ ← Verifykey(τx, σ
′
y)

return (w 6= w′) ∧ (b = 1) ∧ (b′ = 1)

The KGen, ProbGen, and Dec oracles in Definition 5.5 are the same as in
Definitions 5.2 and 5.3.

5.3.3 Property 3: Maliciously-Secure VC with Proof-of-Computation

VC does not per se give a proof that any computation has taken place,
only that the result returned to the client is equal to some (potentially
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non-deterministic) function evaluated on the client’s input. We formalise
Proof-of-Computation as follows:

Every circuit f can be trivially extended to a bigger and deeper circuit f̃
taking more server inputs (e.g., by adding multiplication gates by an all-1
value). However, existing VC schemes only guarantee circuit-satisfiability,
i.e., that the output of each gate corresponds to the gate’s operation applied
to the gate inputs. This does however not imply that the server actually per-
formed any computation, as the server could have computed f honestly, and
then simply set the output of the remaining gates of f̃ to make f̃ satisfiable,
without computing any of the new intermediate values. A malicious server
could therefore use this trick in order to bill the client more without expend-
ing any more compute (e.g., by claiming to have evaluated a much deeper
machine learning model). To remedy this, the client would want a guarantee
that the server expended a similar amount of computation as what is needed
to compute the claimed circuit f̃ . No known VC scheme for FHE support
such guarantees.

Definition 5.6 (Proof-of-Computation)
Formally, a VC scheme offers Proof-of-Computation if for any PPT adver-
sary A = (A1,A2) with A2 with concrete runtime T̂ (expressed in terms of
elementary operations), the probability that the following experiment returns
1 is negligible.

ExprPoC[A](1κ)

(pk, sk)← Setup(1κ)

x← AProbGen,Dec
1 (pk)

(σx, τx)← ProbGenkey(x)

(f, w, σy)← AProbGen,Dec
2 (σx, τx)

b← Verifykey(τx, σy)

T := T [Computepkf (σx, w)]

return (b = 1) ∧ (T < T̂ )

T here is the concrete runtime of honestly evaluating Computepkf (σx, w) (un-
der the same computation model as A).

Having formally introduced these stronger and more expressive VC notions,
we now investigate more traditional indistinguishability-based security no-
tions for FHE in Chapter 6, and show how they are connected to VC. After
that, we will show generic constructions to achieve our newly introduced
properties for state-of-the-art schemes in Chapter 7, and sketch efficient and
expressive integrity primitives for those generic constructions in Chapter 8.
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Chapter 6

Tidying up the FHE Security Zoo

After defining more robust VC notions for real-world FHE in chapter 5, we
will now investigate more classical indistinguishability-based security notions
for FHE (used extensively for public-key cryptography, and since adapted for
FHE schemes). In section 6.1, we survey the literature for FHE constructions
and attacks, and compile a list of existing security notions for FHE used in
existing works. Then, in section 6.2, we then uncover several definitional
issues and ambiguities in the IND-CPAD notion, and refine it. Finally, in
sections 6.3 and 6.4, we relate VC security notions and the more traditional
IND-∗ security notions.

6.1 The FHE Security Zoo

Over the years, a plethora of security notions for FHE have been proposed,
both adaptations of established notions initially introduced for (non-homomorphic)
public-key encryption, as well as new notions tailored to certain families of
FHE schemes.

6.1.1 IND-{CPA,CVA1,CVA2,CCA1,CCA1.5,CCA2}
We introduce the following general experiment ExprIND-ATK

b [A](1κ)(1κ) for the
security notion IND-ATK, parametrised by the set O1 (respectively O2) of
oracles provided to the adversary A before it receives the challenge ciphertext
ct∗ (respectively after). Greyed out code prevents trivial attacks.
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IND-CPA

IND-CVA1 F-IND-CPAD

IND-CVA2 IND-CCA1

IND-CCA1.5

IND-CCA2

\

\ \

\ \ \

\ \

Figure 6.1: The FHE security zoo. Arrows denote implications, striked-through arrows denote sepa-
rations.
Dashed arrows denote separations which do not hold for unprotected FHE schemes, and dotted ar-
rows those that do not hold for exact FHE schemes.

ExprIND-ATK
b [A](1κ)

(pk, ek, sk)← KGen(1κ)

(m0,m1)← AO1
1 (1κ, pk, ek) // Phase 1

ct∗ ← Encpk(mb)

b̂← AO2
2 (ct∗) // Phase 2

OIND-ATK
Verify (ct)

if ct = ct∗ :

return forbidden
m← Decsk(ct)
if m = ⊥ :

return [m = ⊥]

OIND-ATK
Dec (ct)

if ct = ct∗ :

return forbidden
m← Decsk(ct)
return m

For every IND-ATK experiment, we define a corresponding attack game in
which the challenger randomly samples a bit b and runs ExprIND-ATK

b [A](1κ)
before outputting the adversary’s guess b̂. We define the adversary’s advan-
tage in this attack game as AdvIND-ATK[A](κ) = 2

∣∣∣Pr
[
b = b̂

]
− 1

2

∣∣∣.
Table 6.1 summarises the different instantiations of IND-ATK in the literature,
through which we will now go into more detail below.

Indistinguishability under Chosen Plaintext Attack (IND-CPA) is the weakest
notion, and is equivalent to semantic security. The goal of the adversary A
is to guess if given ciphertext ct encrypts the plaintext m0 or m1, where both
plaintexts are chosen by A. All known FHE schemes satisfy this notion (and
all state-of-the-art schemes satisfy only this notion).
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Full name ATK O1 O2

Chosen Plaintext Attack CPA
non-adaptive Chosen Verification Attack CVA1 OVerify

non-adaptive Chosen Ciphertext Attack CCA1 ODec

adaptive Chosen Verification Attack CVA2 OVerify OVerify

adaptive Chosen Decryption/Verification Attack CCA1.5 ODec OVerify

adaptive Chosen Ciphertext Attack CCA2 ODec ODec

Table 6.1: Oracles available to an adversary for different instantiations of the IND-ATK notion.

Chosen Verification Attacks (IND-CVA1 and IND-CVA2) games grant the adver-
sary access to a verification oracle OVerify(ct), which returns 1 if Decsk(ct) =
⊥, and 0 otherwise. For IND-CVA1 the adversary only gets access to this oracle
before receiving the challenge ciphertext, while the oracle is accessible at all
times for IND-CVA2. For all known FHE schemes, Dec will not return ⊥ for
any element in the ciphertext space C, as no checks are performed. The veri-
fication oracle is therefore meaningless for unprotected FHE schemes, and is
only useful for more complex constructions with built-in ciphertext validity
checks. For these schemes, IND-CPA, IND-CVA1, and IND-CVA2 are equivalent.

Chosen Ciphertext Attacks (IND-CCA1 and IND-CCA2) games model an ad-
versary with access to a decryption oracle ODec(ct), which return Decsk(ct).
These notions are therefore stronger than their corresponding CVA equiv-
alents. IND-CCA2 security is fundamentally at odds with the homomorphic
property, and no HE scheme can achieve IND-CCA2 security, due to the inher-
ent malleability of the scheme. For any scheme E that is homomorphic with
respect to the operation ⊕, an adversary can ask the challenger for an encryp-
tion ct0 of the neutral plaintext element 0 ∈ M and submit ct′ = ct∗ ⊕ ct0
to the decryption oracle. Since ct′ 6= ct∗ the decryption oracle will return
Decsk(ct∗ ⊕ ct0) = m∗ ⊕ 0 = m∗ and can trivially recover b by comparing
m∗ to its chosen plaintexts m0 and m1. Interestingly, Das et al. showed
in [DDA13] that IND-CCA1 and IND-CVA2 are incomparable, i.e., there exist
schemes that are IND-CCA1-secure but not IND-CVA2-secure, and vice-versa.

Indistinguishability under adaptive Chosen Ciphertext Decryption/Verification
Attack (IND-CCA1.5) (introduced in [DDA13]) is a stronger notion than both
IND-CVA2 and IND-CCA1, where the adversary is given access to a full de-
cryption oracle in the first phase, and to a verification oracle in the second
phase. An interesting result by Das et al. [DDA13] is that IND-CCA1.5 is not
implied by IND-CCA1 and IND-CVA1 together, i.e., there exist schemes that are
IND-CCA1 and IND-CVA2 secure, but that are not IND-CCA1.5 secure.

In the context of FHE integrity, we are particularly interested in the CCA1
setting, as IND-CCA1-security directly implies resistance against key-recovery
attacks. While an adversary with access to a full decryption oracle will in-
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evitably be able to decrypt ciphertexts and learn the corresponding plain-
texts, the oracle in practice may only partial or hard to trigger. Therefore,
for well-defended (but unprotected) deployments it might not be feasible in
practice for an adversary to get a full decryption for each plaintext it wants
to learn. However, if a key-recovery attack is possible, the adversary may be
able to recover the secret key (potentially over many queries), and gain the
ability to decrypt all ciphertexts after recovery.

6.1.2 IND-CPAD

In [LM21], Li and Micciancio showed that some approximate FHE schemes
(in particular, CKKS) are vulnerable to key recovery attacks in the presence
of a (weak) decryption oracle (while still achieving IND-CPA security).

To address this gap between theory and practice, the authors introduce the
IND-CPAD notion (defined below), which allows the adversary to query a de-
cryption oracle for honestly-generated ciphertexts (i.e., generated by a valid
encryption, or by evaluating a function on valid ciphertexts).

Definition 6.1 (IND-CPAD, rephrased from [LM21; Li+22])
An FHE scheme is IND-CPAD-secure if every adversary A has negligible ad-
vantage AdvIND-CPAD [A](κ) := 2

∣∣∣Pr
[
b = b̂

]
− 1

2

∣∣∣ in the attack game with the
following experiments and oracles:

ExprIND-CPAD
b [A](1κ)(1κ)

(pk, ek, sk)← KGen(1κ)

S := [ ]

i := 0

b̂← AEnc,Eval,Dec(1κ, pk, ek)

OIND-CPAD
Enc [pk](m0,m1)

ct← Encpk(mb)

S[i] := (m0,m1, ct)
i := i+ 1

return ct

OIND-CPAD
Eval [ek](f, i1, . . . , ik)

if f /∈ F : return ⊥
ct← Evalek(f, S[i1].ct, . . . , S[ik].ct)
r0 := f(S[i1].m0, . . . , S[ik].m0)

r1 := f(S[i1].m1, . . . , S[ik].m1)

S[i] := (r0, r1, ct)
i := i+ 1

return ct

OIND-CPAD
Dec [sk](j)

if S[j].m0 = S[j].m1 :

m← Decsk(S[j].ct)
return m

else :

return ⊥

Here, F is the set of all functions or circuits supported by the scheme, and
S and i are part of the challenger’s state which the adversary can read from,
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but not write to. As in [LM21], the evaluation and decryption oracles return
⊥ if queried with out-of-bounds indices. However, we make the check f ∈ F
explicit, whereas it was implicit in [LM21].

Li and Micciancio prove that IND-CPAD reduces to IND-CPA for exact schemes,
but that this equivalence does not hold for approximate schemes. In partic-
ular, CKKS is IND-CPA-secure, but not IND-CPAD-secure. In follow-up work,
Li and Micciancio introduce a generic paradigm to transform any approx-
imate IND-CPA-secure scheme with well-behaved decryption errors into an
IND-CPAD-secure FHE scheme by using differential privacy.

Unfortunately, the IND-CPAD definition as introduced in [LM21] suffers from
several ambiguities which makes it difficult to work with in practice and does
not fully capture the behaviour of state-of-the-art FHE schemes (in particular
“exact” FHE schemes). In the next section, we detail these definitional issues,
and we introduce an alternative definition of IND-CPAD that tries to capture
the same properties, but conforms better with existing FHE schemes.

6.2 F -IND-CPAD: Refining IND-CPAD

While it captures a new and important intermediate security notion between
IND-CPA and IND-CCA1, the IND-CPAD security notion introduced by Li and
Micciancio suffers from several definitional issues, which make it ill-suited for
use in security proofs.

First, without bootstrapping, none of the known FHE schemes are uncondi-
tionally exact; for a given set of parameters, an FHE scheme is exact only
for a specific set of circuits F . Additionally, this set of circuit for which the
scheme is exact is not closed under composition; repeatedly application the
same elementary operation (say, and addition) to freshly encrypted inputs
will lead to correct decryptions up to a certain point (as long as the noise
accumulated in the resulting ciphertext is below some threshold), after which
all decryptions will be erroneous. This clashes with the experiment as de-
fined in [LM21], where the adversary is allowed to evaluate any circuit in F
repeatedly on any of the ciphertexts in the challenger’s S. Finally, in [LM21]
functions are defined over plaintexts, and a correspondence with an equivalent
function over ciphertexts is assumed implicitly. With FHE however, a circuit
over plaintexts can have multiple equivalent circuits over ciphertexts (notably
depending on if/where ciphertext maintenance operations are inserted). If
a scheme supports bootstrapping, there are even infinitely many ciphertexts
(each with a different number of bootstrapping operations performed on the
result) corresponding to the same plaintext circuit! As ciphertext mainte-
nance operations can drastically influence the noise present in ciphertexts
(and thus whether the ciphertext decrypts correctly or not), this ambiguity
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makes the IND-CPAD notion as defined in [LM21] unwieldy, and calls for a
more precise definition, which we introduce in the next subsection.

Definition 6.2 (F-perfect-correctness)
A scheme E = (KGen, Enc,Dec, Eval) is F-perfectly-correct for a family of
functions F if for every F : Ck → C in F and for every m1, . . . ,mm,m′1, . . . ,m′n
in M, it holds that

f(Min,M
′
in) = Decsk

(
Evalek

(
F,Cin,M

′
in
))

with probability 1, where Cin = (Encpk(m1), . . . , Encpk(mm)), Min = (m′1, . . .m′n),
(pk, ek, sk← KGen(1κ), and where f is the (unique) plaintext circuit equiva-
lent to the ciphertext circuit F .

Some FHE schemes are not F-perfectly-correct, but are instead approximate,
meaning that the decrypted result is “close” to the plaintext result:

Definition 6.3 (F-approximativity)
A scheme E = (KGen, Enc,Dec, Eval) is F-perfectly-correct for a family of
functions F if for every F : Ck → C in F and for every m1, . . . ,mm,m′1, . . . ,m′n
in M, it holds that

‖f(Min,M
′
in)− Decsk

(
Evalek

(
F,Cin,M

′
in
))
‖ ≤ ε(F,Cin,M

′
in)

where Cin = (Encpk(m1), . . . , Encpk(mm)), Min = (m′1, . . .m′n), (pk, ek, sk) ←
KGen(1κ), and where f is the (unique) plaintext circuit equivalent to the
ciphertext circuit F .

Here, ε is an error function depending on the circuit FitsinputsCinandMin’
and the public key (sometimes also on the secret key)

Definition 6.4 (F -IND-CPAD)
An FHE scheme is F-IND-CPAD-secure for a set of circuits F if every ad-
versary A has negligible advantage AdvF-IND-CPAD [A](κ) := 2

∣∣∣Pr
[
b = b̂

]
− 1

2

∣∣∣ in
the attack game with the following experiments and oracles:
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ExprF-IND-CPAD
b [A](1κ)

(pk, ek, sk)← KGen(1κ)

Sin, Sout := [ ]

iin, iout := 0

(m0,m1)← AEnc,Eval,Dec
1 (1κ, pk, ek)

ct∗ ← Encpk(mb)

Sin[iin] := (m0,m1, ct∗)
iin := iin + 1

b̂← AO
2 (ct∗)

return
[
b = b̂

]

OF-IND-CPAD
Enc [pk](m, r)

ct← Encpk(m; r)

Sin[iin] := (m,m, ct)
iin := iin + 1

return ct

OF-IND-CPAD
Eval [ek](F, i1, . . . , ik)

if F /∈ F : return ⊥
ct← Evalek(F, Sin[i1].ct, . . . , Sin[ik].ct)
r0 := Eval(F, Sin[i1].m0, . . . , Sin[ik].m0)

r1 := Eval(F, Sin[i1].m1, . . . , Sin[ik].m1)

Sout[iout] := (r0, r1, ct)
iout := iout + 1

return ct

OF-IND-CPAD
Dec [sk](j)

if Sout[j].m0 = Sout[j].m1 :

m← Decsk(Sout[j])

return m
else :

return ⊥

We also define a non-adaptive version of this notion by not providing any
oracle to the adversary in the post-challenge phase (O = ∅), and an adaptive
version, where the adversary has access to all oracles even after the challenge
(O = Enc, Eval,Dec). The definition of IND-CPAD in [LM21] is adaptive. We
also define variants where the adversary is only allowed to make q queries,
for a pre-defined q.

6.2.1 Positioning F -IND-CPAD in the Security Zoo
We will now show that F-IND-CPAD is a drop-in replacement for the IND-CPAD
notion in the FHE security zoo, by proving that the same implications and
separations hold for F-IND-CPAD.

F-IND-CPAD → IND-CPA. Any IND-CPA-adversary against E is automatically
an F-IND-CPAD-adversary, and AdvIND-CPA[A](κ) = AdvF-IND-CPAD [A](κ).

IND-CPA 6→ F-IND-CPAD. Let E = (KGen, Enc,Dec, Eval) be the (unpatched)
CKKS scheme, which is IND-CPA-secure. We show that Π is not F-IND-CPAD-
secure.
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A queries its encryption oracle with m = 0 to get ct = (a, b) = (a, a · sk+ e),
and then queries its evaluation oracle with f = id and i1 = 0 to get ct′ = ct.
A then queries decryption oracle to get m′ = −a · sk+ b = e. By computing
δ = b− e = a · sk, A gets a linear system for sk. By repeating this process n
times, A can recover sk efficiently.

IND-CCA1→ F-IND-CPAD. Any F-IND-CPAD-adversary against E is automat-
ically an IND-CCA1-adversary, and AdvF-IND-CPAD [A](κ) = AdvIND-CCA1[A](κ).

F-IND-CPAD 6→ IND-CCA1. Let E = (KGen, Enc,Dec, Eval) be an F-IND-CPAD-
secure FHE scheme We construct a scheme E ′ such that E ′ is F-IND-CPAD-
secure, but not IND-CCA1-secure as follows, where ‖ denotes concatenation.
E ′ is defined as follows:

E ′.KGen(1κ) : uses the same KGen algorithm as E ;

E ′.Encpk(m) : returns Encpk(m)‖0;

E ′.Evalek(ct) : parses ct′ as ct‖0 and returns E .Evalek(ct)‖0;

E ′.Decsk(ct′) : returns Decsk(ct) if ct′ = ct‖0, and sk otherwise.

E ’ is F-IND-CPAD-secure, as any adversary A against E ’ can be immediately
translated into an F-IND-CPAD adversary B against E (Π′ is F-IND-CPAD-
secure (by reduction to the F-IND-CPAD-security of Π)

Π′ is not IND-CCA1-secure : A queries encryption oracle with m = 0 to get
ct′ = ct‖0 and recovers sk by asking for the decryption of ct′′ = ct‖1

6.2.2 Realizing F -IND-CPAD

We will now show that F-IND-CPAD is achievable in practice by adapting the
constructions and proofs in [LM21; Li+22] to the F-IND-CPAD notion.

F-IND-CPAD = IND-CPA for F-exact schemes

Theorem 6.5
If a scheme E = (KGen, Enc,Dec, Eval) is IND-CPA-secure, F-exact, and if set
membership in F is efficiently computable, then E is F-IND-CPAD-secure.

In particular, for every F-IND-CPAD-adversary A for E, there exists an
IND-CPA-adversary B for E such that AdvF-IND-CPAD [A](κ) = AdvIND-CPA[B](κ).

Proof (Following [LM21, Lemma 1]) Let A = (A1,A2) be a PPT F-IND-CPAD-
adversary attacking E . We construct a PPT IND-CPA-adversary B = (B1,B2)
against E as follows:
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BIND-CPA
1 [A](1κ, pk, ek)

Sin := [ ]

iin := 0

(m0,m1)← AEnc, Eval, Dec
1 (1κ, pk, ek)

return (m0,m1)

BIND-CPA
2 [A](ct∗)

b̂← A2(ct∗)
return b̂

EvalSim[ek](F, i1, . . . , ik)

if F /∈ F : return ⊥
m← Eval(F, Sin[i1].m, . . . , Sin[ik].m)

ct← Evalek(F, Sin[i1].ct, . . . , Sin[ik].ct)
Sout[iout] := (m, ct)
iout := iout + 1

return ct

EncSim[pk](m; r)

ct← Encpk(m; r)

Sin[iin] := (m, ct)
iin := iin + 1

return ct

DecSim(j)

return Sout[j].m

B can perfectly simulate the F-IND-CPAD game for A: B’s simulated oracles
for Enc and Eval are exactly equivalent to the true oracles in the F-IND-CPAD
game, by construction; for the simulated Dec oracle, we have ODecSim(j) =
Sout[j].m = Eval(F, Sin[i1].m, . . . , Sin[ik].m) for some F , i1, . . ., ik where F ,
i1, . . ., ik were submitted to B’s simulated Eval oracle (with F ∈ F), and
where Sin[i1].m, . . ., Sin[ik].m were submitted to B’s simulated Enc oracle.

By F-exactness of E , it follows that

ODecSim(j) = Decsk(Evalek(F, Sin[i1].ct, . . . , Sin[ik].ct))
= Decsk(Evalek(F, Encpk(Sin[i1].m), . . . , Encpk(Sin[ik].m)),

and B perfectly simulates the F-IND-CPAD decryption oracle for A.

We note here that B needs to be able to check F ∈ F efficiently to be an
efficient adversary overall. □

q-F-IND-CPAD from IND-CPA with Differential Privacy

Theorem 6.6 (following [Li+22, Theorem 2])
Let E = (KGen, Enc,Dec, Eval) be an FHE scheme with a corresponding
Estimate such that Ẽ = (E , Estimate) is statically approximate. Let Mt be
a ρ − KLDP mechanism as in [Li+22, Theorem 2]. Then for any PPT
adversary A against the q-F-IND-CPAD-security of M [Ẽ ] there exists an ad-
versary B against the IND-CPA-security of Esuch that

Advq-F-IND-CPAD [A](κ) ≤ qρ

2
+ AdvIND-CPA[B](κ)
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Proof (informal, following [Li+22, Proof of Theorem 2]) The proof proceeds by game-
hopping as follows: Game 0 is the q-F-IND-CPAD game with M [E ], and Game
1 is the same game, except that the decryption oracle return a perturbed
version of the stored plaintext. The difference in advantage between these
two games is negligible, and can be bounded by qρ

2 by using the property
of the ρ − KLDP mechanism. Game 1 is perfectly simulatable by B in its
IND-CPA game, which concludes the proof. □

6.3 Robust FHE from VC with Input Privacy

The notions of VC and IND-∗-security appear to offer similar guarantees, and
to be related somehow. Intuitively, VC appears to provide IND-∗-security
(due to its input privacy notion), but to extend its guarantees to ensure the
integrity of the computation as well. In this section, we will formalise this
intuition by showing that any VC scheme secure in some adversarial setting
is also IND-∗-secure for the same adversarial model.
Definition 6.7 (FHE from publicly-delegatable VC)
Given any publicly-delegatable VC scheme VC (satisfying approximative cor-
rectness for all f ∈ F) with PRIV-CCA1-security, and such that keying mate-
rial can be generated independently of any function f , we construct an FHE
scheme E [VC] as follows:

KGen(1κ)

(pk, sk)← VC.Setup(1κ)
ek := pk

return (pk, ek, sk)

Encpk(m)

(σx, τx)← VC.ProbGenkey(m)

ct := σx ‖ τx
return ct

Evalek(F,Cin)

pkF := (ek, F )

parse Cin as (σi ‖ τi)mi=1

σy ← VC.ComputepkF (F, x = ∅, w = Cin)

return (τi)
m
i=1 ‖ σy

Decsk(ct)

parse ct as (τi)
m
i=1 ‖ σy

if VC.Verifykey(τx, σy) = 1

m← VC.Decodesk(σy)

return m
else :

return ⊥

Theorem 6.8 (E[VC] is an IND-CCA1-secure FHE scheme)
E [VC] from Definition 6.7 is compact with respect to the computation be-
ing evaluated, F-approximate, and IND-CCA1-secure. Additionally, if VC is
perfectly F-exact, then E [VC] is also perfectly F-exact.
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Proof F-approximativity (respectively F-exactness) of E [VC] follows directly
from the approximativity (respectively exactness) of VC.

For IND-CCA1-security, let us consider an efficient adversary A against E [VC].
We can construct an elementary wrapper B around A, which can perfectly
simulate the IND-CCA1 game using its PRIV-CCA1 oracles, and B wins its game
if and only if A wins its game. □

We note that in order to re-frame the VC scheme into the FHE formalism,
we require the keys pkf and skf to be generated independently of f. For
the FHE keys, this is achievable either by using bootstrapping, or by only
consider functions f up to a certain multiplicative depth, and generating keys
accordingly. If VC makes use of a proving system, this system should also
support proving statements for arbitrary circuits, in order to ensure that E
conforms with the non-interactivity requirement of FHE. We also note that
the FHE scheme defined above is compact with respect to the computation
f , but not compact with respect to the number of inputs to the computation.
This limitation is also present in other IND-CCA1-constructions [Can+17].

Theorem 6.8 can be straightforwardly generalised to prove that E [VC] is
IND-ATK-secure if VC is PRIV-ATK-secure. We also note that (to the best
of our knowledge), the generic construction from Definition 6.7 is the first to
propose an IND-CCA-secure approximate scheme.

6.4 VC from Robust FHE

In this section, we investigate the connection between verifiable computation
schemes and IND-CCA1-secure schemes in the other direction: we sketch a
generic construction to augment an IND-CCA1 FHE scheme into a VC scheme,
and we show that existing IND-CCA1-secure constructions in the literature are
actually VC schemes.

Conceptually, re-shaping an IND-CCA1-secure FHE scheme into the VC for-
malism immediately yields a correct and input-private VC scheme. However,
security is not achieved immediately, and one would to augment this scheme
in order to provide security. In practice, we could use the compute-then-
prove paradigm, and require that a proof of correct computation be adjoined
to each ciphertext. We abstain from formalizing this construction here, as
we will present a similar generic construction in Section 7.1.2, and prove its
security by only requiring the weaker property that E be F-IND-CPAD-secure
(instead of IND-CCA1-secure).

We note here that some IND-CCA1-constructions for FHE (in particular the
ones making use of the Naor-Yung paradigm), already provide a VC scheme
(when instantiated with a sufficiently robust proof system). The Naor-Yung
paradigm [NY90] is a generic technique to transform an IND-CPA-secure pub-
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lic key encryption scheme into a IND-CCA1-secure one. This is done by en-
crypting the same plaintext as two ciphertexts under two independent public
keys, together with a proof that both ciphertexts encrypt the same plaintext.
Canetti et al. introduced an IND-CCA1-secure FHE scheme by adapting this
paradigm for FHE [Can+17]. Here, a proof of correct computation is needed
during evaluation.

This approach is similar to our generic approach presented in the next chap-
ter, but more inefficient (due to the doubling in the number of ciphertexts and
in the size of the statements to be proven). Canetti et al.’s construction actu-
ally provides a maliciously-secure VC (for a suitable choice of zero-knowledge
proof systems). We omit a formal proof, as it is very similar to the one we
provide for our generic scheme.

This insight also allows us to demarcate this approach to IND-CCA1-secure
FHE [Can+17] from other IND-CCA1-secure constructions [Bon+07; WWX18]
(which rely on identity-based encryption and indistinguishability obfuscation,
respectively); indeed, constructing a VC scheme from these other approaches
seems to require adding proofs of computation in addition to the already
heavy cryptographic machinery used in these other approaches, which does
not seem to promise an efficient construction.
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Chapter 7

Generic Robust VC Constructions for FHE

In this chapter, we provide generic constructions to achieve the strong FHE
integrity notions from Chapter 5. We build our constructions from the ground
up, striving to use the most simple primitives, in order to understand exactly
what assumptions are needed to achieve FHE integrity. This allows us to
modularly reason about our constructions, to provide simpler proofs, and
for easier future optimizations on the level of the primitives. We start with
a generic construction that achieves our standard definition of maliciously-
secure VC, and extend it incrementally to support more expressive integrity
notions.

7.1 Robust Non-Deterministic VC for Approximate FHE

7.1.1 Building Blocks

Before presenting our generic solution, we first review Succinct Non-interactive
ARguments of Knowledge (SNARKs):

Definition 7.1 (SNARK)
Let R be an efficiently computable binary relation which consists of pairs of
the form (x,w), where x is a statement, and w is a witness. Let L be the
language associated with the relation R, i.e., L = {x | ∃w.R(x,w) = 1} .

A triple of polynomial time algorithms Π = (Setup,Prove, Verify) is a SNARK
for an NP relation R, if the following properties are satisfied:

Completeness. For every true statement for the relation R, an honest prover
with a valid witness always convinces the verifier:

∀(x,w) ∈ R : Pr
[
Verifyvk(x, π) = 1

∣∣∣∣∣ (crs, vk)← Setup(1κ)

π ← Provecrs(x,w)

]
= 1
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Knowledge Soundness. For every PPT adversary, there exists a PPT ex-
tractor that gets full access to the adversary’s state (including its random
coins and inputs). Whenever the adversary produces a valid argument, the
extractor can compute a witness with high probability:

∀A ∃E : Pr
[
Verifyvk(x̃, π̃) = 1

∧R(x̃, w′) = 0

∣∣∣∣∣ (crs, vk)← Setup(1κ)

((x̃, π̃);w′)← A|E(crs)

]
= negl(κ)

We stress here that this definition requires a non-black-box extractor, i.e.,
the extractor gets full access to the adversary’s state.

Succinctness. For any x and w, the length of the proof is given by |π| =
poly(κ) · polylog(|x|+ |w|).

In our construction, we will require the zero-knowledge property in order to
hide the server’s input:

Definition 7.2 (zk-SNARK)
A zk-SNARK for a relation R is a SNARK for R with the following additional
property:

Zero-Knowledge. There exists a PPT simulator S = (S1,S2) such that S1
outputs a simulated CRS crs and a trapdoor td; On input crs, x, and td, S2
outputs a simulated proof π, and for all PPT adversaries A = (A1,A2), such
that ∣∣∣∣∣∣∣Pr

(x,w) ∈ R∧
A2(π) = 1

∣∣∣∣∣∣∣
(crs, vk)← Setup(1κ)

(x,w)← A1(1
κ, crs)

π ← Provecrs(x,w)

−
Pr

(x,w) ∈ R∧
A2(π) = 1

∣∣∣∣∣∣∣
(crs′, td)← S1(1κ)

(x,w)← A1(1
κ, crs′)

π ← S2(crs′, td, x)


∣∣∣∣∣∣∣ = negl(κ)

We now recall a somewhat newer and stronger notion for SNARKs (due to
Fiore and Nitulescu) [FN16], namely O-SNARKs. For the knowledge sound-
ness of classical (zk-)SNARKs, the extractor is a non-black-box algorithm
with the same input as the prover. When used as part of a broader protocol,
a (potentially) malicious prover might have access to additional information,
e.g., through some additional input, or through oracles. In these situations,
an extractor as defined in Definition 7.1 might not exist. The following def-
inition of O-SNARKs models this setting and captures this limitation, by
requiring that knowledge soundness hold for adversaries with access to aux-
iliary information and an oracle O sampled from an oracle family O.
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Definition 7.3 (0-SNARK [FN16])
An O-SNARK for a relation R satisfies adaptive knowledge soundness with
respect to the oracle family O = {O} if for all auxiliary information z ← Z,
for every PPT adversary A, there exists a PPT extractor ExtA such that

Pr

Verifyvk(x, π) = 1

∧ (x,w) /∈ R

∣∣∣∣∣∣∣∣∣∣
(crs, vk, td)← Setup(1κ)

O ← O
(x, π)← AO(crs, z)

w ← ExtA(crs, z, qt)

 = negl(κ),

where qt = {qi, O(qi)}i is the transcript of all oracle queries and answers
made and received by AO during its execution.

7.1.2 Maliciously-Secure VC

Let us now define the two following relations and corresponding O-SNARKs:

Definition 7.4 (FHE Integrity Relation)
Let RF capture correct evaluations of a function F as follows:

RF =

(
(ctout, Cin) , C

′
in
) ∣∣∣∣∣∣∣

ctout = Evalek(F,Cin, C
′
in)

∧ ∀i : Cin[i] ∈ Ω

∧ ∀i : C ′in[i] ∈ Ω

,

where Ω denotes the set of all valid ciphertexts with respect to the public key
pk.

The check for C ′in[i] ∈ Ω can be implemented either by showing that C ′in[i]
is the (deterministic) embedding in cipherspace of a valid plaintext, or by
showing that C ′in[i] is a valid encryption of a valid plaintext. For the former,
the check could be implemented as C ′in[i]0 ∈M∧C ′in[i]1 = 0 (i.e., C ′in[i] is the
standard BGV embedding of a valid plaintext), while for the latter we could
for example use ΠEnc.Verifyvk(C

′
in[i];m, r) by relying on another SNARK for

the relation REnc =
{
(ct, (m, r))

∣∣m ∈M∧ r ∈ RM ∧ ct = Encpk(m; r)
}

.

The check for Cin[i] ∈ Ω can be implemented similarly, but can also be sim-
plified if the encryptor is a trusted party: instead of proving that Cin[i] fulfils
some validity property, we only check that it is in some set of honestly gener-
ated ciphertexts. This is especially useful when the verifier and the encryptor
are the same party, as it can trivially perform this check by matching Cin[i]
against the ciphertexts it sent to the server for evaluation. In the following,
let ΠF be an O-SNARK for RF .

We also make use of the following definition in the proofs:
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Definition 7.5 (Recomputation from Extracted Witness)
For RF as defined above, we define a corresponding function Recomputepk,ek
that takes a witness w as input, and returns a ciphertext ctout:

Recomputepk,ek(Cin, C ′in)

ctout := E .Evalek(F,Cin, C
′
in)

return ctout

Note that by construction, we have that for all ctout and w, ((ctout, Cin), w) ∈
R ⇐⇒ ctout = Recomputepk,ek(Cin, w).

We are now ready to introduce our first generic construction for maliciously-
secure VC:
Definition 7.6 (Generic Construction)
For an FHE scheme E = (KGen, Enc,Dec, Eval) and the SNARK from Defi-
nition 7.4, we define a new FHE scheme VC [E ] as follows:

Setup(1κ),KGenpk(f) : VC [E ] generates public and secret keys for the FHE
scheme E and for the SNARKs;

ProbGenpk(x) : both σx and τx consists of encryptions of the plaintexts in x
together with proofs of their correct encryption;

Computepkf (σx, w) : σy consists of the evaluation of f with inputs from σx
and w, as well as a proof that i) verifies the encryption proofs in σx, and ii)
certifies that the evaluation of f was done correctly;

Verifyskf (τx, σy) : the verification step simply uses Πf to check if the proof
included in σy is correct;

Decodesk,skf (σy) : this is simply the FHE decryption.

We define all steps of VC [E ] more formally below.
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VC [E ] .Setup(1κ)

(pkE , ekE , skE)← E .KGen(1κ)
pk := (pkE , ekE , crsEnc)

sk := (skE , vkEnc)

return (pk, sk)

VC [E ] .KGenpk(f)

(crsf , vkf )← Πf .Setup(1
κ)

pkf := (crsf , pk.ek
E)

skf := vkf

return (pkf , skf )

VC [E ] .ProbGenpk(x)

parse pk as (pkE , ekE)

parse x as Min

for mi in Min :

ri ←RM

cti ← E .Encpk(mi; ri)

σx := Cin

τx := σx

return (σx, τx)

VC [E ] .Computepkf (σx, w)

parse pkf as (crsf , pk.ek
E)

parse σx as Cin

parse w as C ′
in

ctout ← E .Evalek(F,Cin, C
′
in)

π ← Πf .Provecrsf ((ctout, Cin);C
′
in)

σy := (ctout, π)

return σy

VC [E ] .Verifyskf (τx, σy)

parse τx as Cin

parse σy as (ctout, π)

b← Πf .Verifyvkf ((ctout, Cin), π)

return b

VC [E ] .Decodesk,skf (σy)

parse σy as (ctout, π)

m← E .DecskE (ctout)

return m

Theorem 7.7 (VC [E] is Correct)
Let E be an F-approximate FHE scheme, and let Π and VC [E ] be as in
Definition 7.6. VC [E ] is correct.

Proof Let f ∈ F , and let (pk, sk) ← Setup(1κ), (pkf , skf ) ← KGen(f),
(σx, τx)← ProbGenkey(x), and σy ← Computepkf (σx, w).
Verifykey(τx, σy) = 1 by construction and by the (perfect) correctness of Π, and∥∥∥Decodesk,skf (σy, w)− f(x,w)

∥∥∥ ≤ ϵ by construction and by F-approximativity
of E . □
Theorem 7.8 (VC [E] is PRIV-CCA1-secure)
Let E be an F-IND-CPAD-secure FHE scheme, and let Π and VC [E ] be as in
Definition 7.6. VC [E ] is PRIV-CCA1-secure.
In particular, for every PRIV-CCA1-adversaryA for Π, there exists an F-IND-CPAD-
adversary B for E, and a KS-adversary C against Π such that

AdvPRIV-CCA1[A](κ) ≤ AdvF-IND-CPAD [B](κ) + AdvKS[C](κ)
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Proof Informally, VC [E ] allows us to reduce the PRIV-CCA1 security to the
F-IND-CPAD-security of E , by only allowing for decryptions of ciphertexts that
have been computed by evaluating a function f ∈ F on honestly encrypted
inputs, which is enforced through the proof schemes.

Game 1:

b←$ {0, 1}
(pkE , skE)← E .Setup(1κ)
(crsV , vkV , tdV )← Π.Setup(1κ)

pk := (pkE , crsV )

(x0, x1)← AO1
1 (1κ, pk)

r ←RM

σ∗
b := E .Encpk(mb; r)

τ∗b := σ∗
b

b̂← AO2
2 (σ∗

b , τ
∗
b )

return b = b̂

OProbGen(x)

r ←RM

σx := E .Encpk(x; r)
τx := σx

return (σx, τx)

ODecode(σy, τx)

a← Verifykey(σy)

if a = 0 :

return ⊥
else :

m← E .Decsk(ct)
return m

Game 2:

b←$ {0, 1}
(pkE , skE)← E .Setup(1κ)
(crsV , vkV , tdV )← Π.Setup(1κ)

pk := (pkE , crsV )

(x0, x1)← AO1
1 (1κ, pk)

r ←RM

σ∗
b := E .Encpk(mb; r)

τ∗b := σ∗
b

b̂← AO2
2 (σ∗

b , τ
∗
b )

return b = b̂

OProbGen(x)

r ←RM

σx := E .Encpk(x; r)
τx ← Π.Provecrs(σ

∗;x, r)

return (σx, τx)

ODecode(σy, τx)

a← Verifykey(σy)

if a = 0 :

return ⊥
else :

w ← ExtA(crsf , (σy, τx), qt)

σ′
y := Recomputepk,pkf (τx, w)

m← E .Decsk(σ′
y)

return m

OKGen is not shown, as it is not modified throughout the games. The oracles available toA are
O1 = (OKGen,OProbGen,ODecode), andO2 = (OKGen,OProbGen).

Figure 7.1: Games for the proof of Theorem 7.8. Gray lines highlight differences with the previous
game.

More formally, consider the games in Figure 7.1. Let A = (A1,A2) be an ad-
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versary against the PRIV-CCA1 security of Φ [E ]. We first construct a sequence
of games for A (starting with the PRIV-CCA1 game for VC [E ]), and show that
A’s advantage does not increase significantly from game to game. We can
then construct an F-IND-CPAD-adversary against E by making non-black-box
use of A. Let Wi be the probability that the adversary A wins Game i.

G0 → G1 : Game 0 is the VC-CCA1 input privacy game (Definition 5.2) for
VC [E ], and Pr[W0] = AdvVC-CCA1[A](κ). Game 1 is the same game as Game 0,
except that we expanded the definitions of VC [E ] .ProbGen, VC [E ] .Verify and
VC [E ] .Decode, hence Pr[W0] = Pr[W1].

G1 → G2 : Going from Game 1 to Game 2, only the decryption oracle changes:
instead of decrypting A’s ciphertext, the challenger first verifies the proof,
then recovers a witness w for the statement x, and returns the decryption
of the recomputed ciphertext ct. We now argue that |Pr[W1]− Pr[W2]| =
negl(κ): clearly, both games are the same until the decryption oracle queried
on the same input σ returns different plaintexts in Game 1 and Game 2. Let
EDec denote this event; by the difference lemma, we have |Pr[W1]− Pr[W2]| ≤
Pr[EDec].

Pr[EDec] is negligible, as otherwise we would have an adversary against the
knowledge soundness (with oracles O1 and additional data pk) of the proving
scheme:

Pr[EDec] = Pr

 Π.Verifyvk(τx, σy) = 1

∧ σ′y = Recomputepk,pkf (τx, w)

∧ E .Decsk(σy) 6= E .Decsk(σ′y)

∣∣∣∣∣∣∣
(crs, vk)← Setup(1κ)

(x, π)← AO1
1 (crs, pk)

w ← ExtA1(crs, pk, qt)



≤ Pr

 Π.Verifyvk(τx, σy) = 1

∧ σy 6= Recomputepk,pkf (τx, w)

∣∣∣∣∣∣∣
(crs, vk)← Setup(1κ)

(x, π)← AO1
1 (crs, pk)

w ← ExtA1(crs, pk, qt)


(Decsk(·) is injective)

≤ Pr

Π.Verifyvk(τx, σy) = 1

∧ (x,w) /∈ R

∣∣∣∣∣∣∣
(crs, vk)← Setup(1κ)

(x, π)← AO1
1 (crs, pk)

w ← ExtA1(crs, pk, qt)

 (Def. 7.5)

= AdvKS[A1](κ)

Going through all games in sequence, we showed |Pr[W0]− Pr[W2]| = negl(κ).

We can now construct an adversary B = (B1,B2) against F-IND-CPAD of E
by using A, simulating Game 2 with the help of the F-IND-CPAD oracles. B
proceeds as follows:
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• On input (1κ, pk, ek) (for the F-IND-CPAD game against E), B samples
(crs, vk)← Π.KGen(1κ) and sets pk′ = (pk, crs).

• B then runs A(1κ, pk′, ek) in a non-black-box manner as follows:

– WheneverA issues a decryption query for ct′, B first checks whether
VC [E ] .Verifyvk(ct′) = 1. If this is not the case, B can safely answer
A’s query with ⊥. If the verification check passes, B parses ct′ as
(x, π), and retrieves a corresponding witness w using the extractor
E . B then computes j = Recomputepk,ek(w), and submits j to its
decryption oracle to get m, which it returns to A.

– WheneverA asks for the challenge ciphertext for the pair (m0,m1),
B relays this pair to its own challenger, and receives back σ∗. B
then simulates a proof π∗ for σ∗ (the statement is in the language,
but B does not know a witness), and sends (σ∗,m∗) to A.

– When A outputs b̂, B also outputs b̂.
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Game 2:

b←$ {0, 1}
(pkE , skE)← E .Setup(1κ)
(crsV , vkV , tdV )← Π.Setup(1κ)

pk := (pkE , crsV )

(x0, x1)← AO1
1 (1κ, pk)

r ←RM

σ∗
b := E .Encpk(mb; r)

τ∗b := σ∗
b

b̂← AO2
2 (σ∗

b , τ
∗
b )

return b = b̂

OProbGen(x)

r ←RM

σx := E .Encpk(x; r)
τx := σx

return (σx, τx)

ODecode(σy, τx)

a← Verifykey(σy)

if a = 0 :

return ⊥
else :

w ← ExtA(crsf , (σy, τx), qt)

σ′
y := Recomputepk,pkf (τx, w)

m← E .Decsk(σ′
y)

return m

B1[A](1κ, pkE)

(crsV , vkV , tdV )← Π.Setup(1κ)

pk := (pkE , crsV )

(x0, x1)← AO1
1 (1κ, pk)

return (m0,m1)

B2[A](σ∗, τ∗)

b̂← A2(σ
∗, π∗)

return b̂

ProbGenSim(x)

r ←RM

σx ← OEnc(x; r)

τx := σx

return (σx, τx)

DecodeSim(σ, τ)

a← Verifykey(σy)

if a = 0 :

return ⊥
else :

w ← ExtA(crsf , (σy, τx), qt)

j := Recomputepk,pkf (τx, w)

m← ODec(j)

return m

Recompute performs the same computations as Recompute, but uses the en-
cryption and evaluation oracles from the F-IND-CPAD game instead of en-
crypting and evaluating directly. By running Recompute(w), B ensures that
ct is stored at the index j in the challenger’s state Sout, and can thus recover
m through a query to its F-IND-CPAD decryption oracle, and B can perfectly
simulate Game 2 for A.

□
Theorem 7.9 (VC [E] is VER-CCA1-secure)
Let E be an FHE scheme, and let Π and VC [E ] be as in Definition 7.6. VC [E ]

70



is VER-CCA1-secure.

In particular, for every VER-CCA1-adversary A for Π, there exists a KS-
adversary B against Πf such that

AdvVER-CCA1[A](κ) = AdvKS[B](κ)

Proof Let A be a PPT adversary against the VER-CCA1-security of Π. B simu-
lates the KS game forA, and recovers x, f , and σy such that Πf .Verifyvkf (τx, σy) =
1 and (σy, (τx, w)) /∈ Rf (for (σx, τx) ← ProbGenpk(x)) with some non-
negligible probability, and B wins the KS game exactly when A wins in the
VER-CCA1-game.

We note that in all these proofs, we did not require that E be exact. In fact,
our construction can transform any F-IND-CPAD-secure scheme (including the
DP-augmented CKKS scheme [Li+22]) into a IND-CCA1-secure VC scheme.
To the best of our knowledge, this is the first construction to achieve this.
We also note that our construction is conceptually simpler than the one
from [Boi+21], which includes some parts that are required by the concrete
approach chosen by Bois et al. (e.g., the use of homomorphic hashing, or
the use of a commit-and-prove scheme). Additionally, we explicitly take into
account oracles and additional information available to a malicious prover
using the O-SNARK formalism, in order to faithfully capture a strong and
realistic adversary; to the best of our knowledge, we are the first to do so in
the VC literature for FHE.

7.1.3 Maliciously-Secure VC with Server Context-Hiding

However, this first generic construction does not even offer server context
hiding, as the noise present in σy could leak information about w. In order to
achieve weak context hiding, we make use of a circuit privacy mechanism to
make the noise independent of w. We recall the definition of circuit privacy:

Definition 7.10 (Circuit Privacy)
Formally, an FHE scheme E is circuit-private if there exists a simulator Sim
such that for all ciphertext circuits F (and corresponding plaintext circuits
f) and for all Min in the domain of f , the distributions E .Sim(pk, f(x)) and
E .Evalek(f, Cin) are statically indistinguishable, given (pk, ek, sk)← E .KGen(1κ),
∀i : Cin[i]← E .Encpk(Min[i]).

In practice, circuit privacy can be implemented in two different ways. The
first approach uses noise flooding and was introduced by Gentry in [Gen09,
Chapter 21]. Here, the noise in the output ciphertext is “drowned” under
a much larger amount of noise (e.g., by adding a random sum of honestly
generated encryptions of 0, as proposed in [FNP20; Boi+21]. A second ap-
proach by Ducas and Stehlé uses repeated applications of the bootstrapping
procedure to attain the independence of the resulting noise with respect to
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the computation’s inputs. Let us now show that the generic VC scheme
from Definition 7.6 instantiated with a circuit-private FHE scheme achieves
server context-hiding. We note that we do not rely on any specific circuit
privacy mechanism (contrary to [FNP20; Boi+21]) in the following theorem
and proof.

Theorem 7.11
Let VC be the generic VC scheme from Definition 7.6, where E is a circuit-
private, F-IND-CPAD-secure FHE scheme. Then VC is a maliciously-secure
VC with correctness, input hiding, security, and server context hiding.

Proof Correctness, input hiding, and security follow directly from Proofs 4
to 6.

In order to prove that VC is server context hiding, we simply define the
simulators S1, S2, and S3 from Definition 5.4:

S1(1
κ)→ (pk∗, sk∗, td) : S1 simply runs Setup(1κ), and outputs an empty

trapdoor td.

S2(td, f)→ (pk∗f , sk
∗
f , tdf ) : S2 proceeds as KGenpk(f), but uses the simulated

keys (crsf , vkf , tdf )← Π.SetupSim(1κ) instead.

S3(tdf , τx, f(x,w)→ σ∗y : s3 first computes a fake result ciphertext ct∗out ←
E .Sim(pk, f(x,w)) by using E ’s circuit privacy simulator, and then generates a
simulated proof π∗ for the statement (ct∗out, Cin) using the SNARK simulator
and the trapdoor tdf .

S1 obviously generates the same distribution as Setup. S2 also generates a
distribution that is indistinguishable from KGen due to the zero-knowledge
property of the SNARK. Finally, S3 generates σ∗y = (ct∗out, π

∗) indistinguish-
able from σy, owing to the circuit privacy of E and the zero-knowledge prop-
erty of the SNARK. □

7.1.4 Maliciously-Secure VC with Full Context-Hiding

The server context-hiding construction from above does not satisfy full context-
hiding, as an adversary with access to the secret key sk would be able to
decrypt τx = Cin to recover x. In order to remediate this, τx needs to retain
information about x, but it should hide from an adversary with the FHE
secret key. We will realise this property by using a commitment scheme to
commit to x in τx.

Let us recall the definition and properties of a commitment scheme:

Definition 7.12 (Commitment)
A commitment scheme Com = (Setup,Commit,Open) is a triple of PPT
algorithms:
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Setup(1κ)→ ck : generates a public key ck;

Commitck(m)→ (com, o) : from a message m, generates a commitment com
and a corresponding opening o;

Openck(com,m, o)→ 0/1 : outputs 1 if (m, com, o) is a valid message-commitment-
opening tuple, and 0 otherwise.

A commitment scheme is secure if it satisfies the following properties:

Correctness: For every m in the commitment message space Mck, if (ck ←
Setup(1κ), (com, o)← Commitck(m), then Openck(com,m, o) = 1.

Hiding: It is computationally infeasible for any adversary A to distinguish be-
tween commitments com0, com1 to messages m0,m1 ∈Mck (where (comb, ob)←
Commitck(mb)).

Binding: It is computationally infeasible for any adversary A to find val-
ues (com,m0,m1, o0, o1) such that com can be opened to both (m0, o0) and
(m1, o1).

Formally, for every PPT adversary A, the following probability is negligible:

Pr

 m0 6= m1

∧ Openck(com,m0, o0) = 1

∧ Openck(com,m1, o1) = 1

∣∣∣∣∣∣∣
ck← Setup(1κ)

(com,m0,m1, o0, o1)← A(1κ, ck)


Definition 7.13
Our generic construction will be the VC scheme from Definition 7.6 instanti-
ated with a circuit-private FHE scheme, but using a SNARK for the following
relation RF :

RF =


(
(ctout,Comin) , (Cin, Oin, C

′
in)

)
∣∣∣∣∣∣∣∣∣

ctout = Evalek(F,Cin, C
′
in)

∧ ∀i : Cin[i] ∈ Ω

∧ ∀i : C ′in[i] ∈ Ω

∧ ∀i : Openck(Comin[i], Cin[i], Oin[i])


The algorithm for VC need to be adapted as follows:

Setup(1κ) : Setup additionally generates the commit key ck, which is inde-
pendent of the circuit to be evaluated;

KGenpk(f) : does not change (insofar as it only generates keying material for
another SNARK);

ProbGenpk(x) : σx = (Cin, Oin) remains unchanged, but τx = Comin now
consists of commitment and opening values for inputs in x;
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Computepkf (σx, w) : remains unchanged (but uses a SNARK for RF as de-
fined above);

Verifyskf (τx, σy) : the verification step simply uses the SNARK to check if the
proof included in σy is correct;

Decodesk,skf (σy) : remains unchanged.

Theorem 7.14
Let VC be the generic VC scheme from Definition 7.13. Then VC is a
maliciously-secure VC with correctness, input hiding, security, and context-
hiding.

Proof Correctness follows directly from Proof 4. Security follows from Proof 6,
due to the binding property of the commitment scheme. Input privacy can
also be reduced to the input privacy of the server context-hiding scheme, by
noting that the adversary does not gain advantage by the presence of the
commitment values in τx, owing to the hiding property of the commitment.

In order to prove that VC is context hiding, we simply define the simulators
S1, S2, S3, and Sτ from Definition 5.4:

S1(1
κ)→ (pk∗, sk∗, td) : S1 simply runs Setup(1κ), and outputs an empty

trapdoor td.

S2(td, f)→ (pk∗f , sk
∗
f , tdf ) : S2 proceeds as KGenpk(f), but uses (crsf , vkf , tdf )←

Π.SetupSim(1κ) instead of the real values.

S3(tdf , τx, f(x,w)→ σ∗y : s3 first computes a fake result ciphertext ct∗out ←
E .Sim(pk, f(x,w)) by using E ’s circuit privacy simulator, and then gener-
ates a simulated proof π∗ for the statement (ct∗out,Comin) using the SNARK
simulator and the trapdoor tdf .

Sτ (td)→ τx : Sτ chooses a dummy value, and commits to it.

S1 obviously generates the same distribution as Setup. S2 also generates a
distribution that is indistinguishable from KGen due to the zero-knowledge
property of the SNARK. S3 generates σ∗y = (ct∗out, π

∗) indistinguishable from
σy, owing to the circuit privacy of E and the zero-knowledge property of
the SNARK. Sτ generates commitments to dummy values that are indistin-
guishable from commitments to x due to the commitment scheme’s hiding
property. □

7.2 Input Checks

An input check can either be implemented in the circuit directly if it is
easily expressible as a polynomial; in this case, correctness with input checks
directly follows from the correctness of the underlying FHE scheme.
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As noted in [Boi+21], more complex checks can also be implemented by
embedding them inside the relation Rf (i.e., instead of proving ct ∈ Ω, one
would prove ct ∈ Ω ∧ check(ct) = 1, for example by relying on an auxiliary
SNARK). In this case, correctness with checks follows from the correctness
of the SNARK. One could even imagine a combined approach for complex
checks, where part of the check (e.g., simple linear equations) are implemented
directly in the circuit, and the remaining part (e.g., non-linear requirements)
is checked using the SNARK.

7.3 Input Commitment

We define similar relations than in Definition 7.4, except that we require the
server’s value to be committed, and that this commitment is proved to be
opened:

Let us now define the two following relations and corresponding O-SNARKs:

Definition 7.15 (FHE Integrity Relation with Commitments)
Let REnc from Definition 7.4 capture valid encryptions, and let RF,com capture
correct evaluations of a function F :

RF,com =


(
(ctout,Comin),

(Cin, Oin, C
′
in)

)
∣∣∣∣∣∣∣∣∣

ctout = Evalek(F,Cin, C
′
in)

∧ ∀i : Cin[i] ∈ Ω

∧ ∀i : C ′in[i] ∈ Ω

∧ ∀i : Openck(Comin[i], C
′
in[i], Oin[i])


This is exactly the relation from Definition 7.13, except that the commitment
is now to the server input instead of the client input. In the following, let
ΠF,com be an O-SNARK for RF,com.

Definition 7.16 (Generic Construction for Input Commitment)
For an FHE scheme E = (KGen, Enc,Dec, Eval) and the zk-O-SNARKs from
Definition 7.4, we define a new FHE scheme VC [E ] as follows. VC [E ] is the
same as in Definition 7.6, except that the relation RF from Definition 7.15
is used instead of the one from Definition 7.4. Correspondingly, both the
verification and the proof are done using the statement (ctout,Comin) instead
of simply (ctout, Cin), where Comin and Oinare sent by the serve to the client
at the start of the protocol.

Theorem 7.17
Let E be an F-IND-CPAD-secure FHE scheme, and let VC [E ] be the scheme
from Definition 7.16. Then VC [E ] is correct, PRIV-CCA1-secure, VER-CCA1-
secure, and offers input commitment.

Proof
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Correctness. As in Definition 5.1, correctness follows immediately from the
correctness of the FHE and proof schemes.

Input Privacy. The proof is very similar to Proof 5, as none of the changes
made to the protocol (the commitments Comin, the proving and verification
procedure) are dependent on x.

Security. The proof follows immediately from Proof 6.

Input Commitment. We can reduce input commitment to the binding prop-
erty of the commitment scheme. Given any PPT adversary A against COM,
we can construct an adversary B for the binding security game of the commit-
ment scheme underlying VC. B can perfectly simulate the COM game for A,
and will receive x, w = Min, and w′ = M ′in such that for honestly computed
σy and σ′y from x and w (respectively w′) are both accepted by an honest
verifier, and w 6= w′. B can select the index i such that Min[i] 6= M ′in[i],
and output (Comin[i],M ′in[i], Oin[i],Min[i], Oin[i]). B wins if and only if wins.
We note here that we achieve input commitment (a property unclaimed by
[Boi+21]) with a weaker assumption on the commitment scheme (namely,
binding instead of knowledge binding, cf. [Boi+21, Definition 10]). □
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Chapter 8

Towards Better Primitives for Robust FHE
Integrity Protection

In this final chapter, we evaluate how suitable the primitives investigated
in Chapter 4 are for our generic constructions from Chapter 7, and sketch
avenues of research towards integrity primitives that support the complex
requirements of practical FHE deployments.

8.1 Cryptography-Based

Our generic construction requires O-SNARKs to prove correct encryption
and correct evaluation. These SNARKs must be robust in the face of oracles
(in particular, verification and decryption oracles). Additionally, they should
support commitments and advanced input checking in order to support Input
Commitment and Input Checks.

A given protocol that is insecure in the face of verification queries can still
be used securely in practice by aborting the protocol and generating new
keys after a failed verification. This would strip a malicious adversary from
a decryption oracle (for the keying material used up to the abort).

Efficient Input Checks. Input checks must be expressible as ring operations
in order to be natively checked using ring-based proofs. For example, consider
a zero slots check: this check would verify that for a plaintext input m ∈
Rt
∼= ZN

t , the slot values at indices S0 of m are zero, i.e., ∀i ∈ S0 : m[i] = 0.
This can be enforced easily by first embedding the plaintext in cipherspace
(e.g., by setting the second ciphertext component to 0), and then performing
a multiplication with a constant mask mmask, where mmask[i] = 0 if i ∈ S0,
and 1 otherwise.

Similarly, range checks can be implemented by taking advantage of the RNS
representation as follows. for a given plaintext m, we want to check that
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each coefficient mi lies in Zk, for k ≤ t. This can be done by embedding m
into Rq, multiplying each element by δ :=

⌈ q1
k

⌉
, applying a modulus switch

to q1, and scaling back (with rounding) to Rt. Any element mi ∈ Zk will
be preserved by this transformation, while mi ∈ Zq \ Zk will be mapped to
an element of Zk. We note that this process can be used to enforce more
fine-grained constraints mi ∈ [a, b] by enforcing m̃i := mi − a ∈ Zb; b has to
be the same for the entire plaintext, but the lower bound a can be chosen for
each coefficient independently.

Efficient Input Commitments. Ring-based proof systems can support com-
mitments if the opening algorithm can be expressed as ring operations. This
could be done by using a lattice-based commitment scheme (e.g., the BDOP
commitment [Bau+18]); in [CTPH21], Chatel et al. show how a BDOP com-
mitment can be opened homomorphically using CKKS, a technique which
could be adapted to ring-based proofs. We leave concrete details for future
work.

8.2 Hardware-Based

Hardware-based primitives (i.e., TEEs) are much more flexible integrity prim-
itives than their cryptographic counterparts; in particular, they implement
proof systems that are secure against verification oracles.

Input checks can be implemented straightforwardly for any check expressible
as a program. Similarly, input commitment can be trivially implemented by
relying on any classical commitment scheme (e.g., over bits, or even lattice-
based), adding a minimal overhead compared to the FHE computation.

Proof of Computation. One big advantage of TEEs is that they not only
allow for proofs of knowledge, but also for proofs that a computation actu-
ally took place. This unique feature allows to natively producing proofs-of-
computation: for this, we require that an adversary is not able to expend
less computational power in order to provide an output for a given compu-
tation. This can be enforced by using a “no-shortcut” FHE library, i.e., a
standard FHE library modified such that each FHE operations requires the
same amount of computation, regardless of the operation’s inputs. In prac-
tice, this would only mean to remove support short-circuit evaluation for
ciphertext-plaintext operations (e.g., optimizations that make a multiplica-
tion output 0 if one of the (plaintext) operands is 0), as most FHE operations
are oblivious to the contents of its inputs.

We thus see promising avenues of research for both hardware-based and cryp-
tographic integrity primitives. In the short term, hardware primitives can
easily be deployed at minimal cost in order to quickly mitigate the attacks
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we have outlined in Chapter 5 (e.g., by using our framework [Knaa]). How-
ever, TEEs require some trust in the hardware vendor, and might be not
readily available for all use cases. Therefore, we believe that more practi-
cal cryptographic integrity primitives are an interesting and promising av-
enue of research (and as we have shown in Chapter 4, cryptographic and
hardware-based approaches can complement each other for further efficiency
and expressiveness).
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Chapter 9

Conclusion and Future Work

FHE is a very promising privacy-preserving technology on the brink of de-
ployment, but due to its lack of integrity, using it in real-world settings can
lead to a total loss of correctness and privacy for users. In this thesis, we
first studied, analysed and compared existing approaches and notions for
FHE integrity in the literature, and outlined limitations of these approaches
and their inadequacy for state-of-the art FHE schemes. We followed up this
analysis by extracting desirable security and functional properties for major
types of FHE applications, and showed how existing integrity notions fail to
guarantee these properties. We then formalised these desirable properties as
novel, more robust integrity notions that naturally generalise existing defini-
tions. We also studied more traditional, indistinguishability notions for FHE,
and provided new insights into their connection to verifiable computation.

In order to address this mismatch between theory and practice, we then
provide generic construction that achieve our newly defined integrity notions,
and prove their security. Finally, we presented desirable criteria for practical
integrity primitives, and we analysed, improved, and implemented the two
most promising approaches (both cryptographic and hardware-based). As a
last step, we sketched ideas for more concretely efficient integrity primitives
that fully support the needs of modern FHE.

This constitutes a large avenue of future work, with the aim to construct
more efficient, flexible, and robust integrity primitives. Another avenue of
research lies in further strengthening and refining the adversarial model for
FHE applications in practice, in particular for many-party systems. Finally,
recent years have seen a variety of advanced FHE variants, such as functional
bootstrapping, transciphering between FHE schemes, and even transcipher-
ing between a traditional FHE scheme and a custom stream-cipher. We con-
sider that investigating the security of these advanced variants, and to extend
our constructions and analysis to these settings is an interesting venue for
future work.
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