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Abstract

Data poisoning attacks are an adversarial machine learning setting in which
a malicious entity corrupts training data with the aim to deteriorate model
accuracy. The behaviour of the model in such settings has classically been
studied with regards to the dataset as a whole. In this thesis, we present an
empirical analysis of the effects of a backdoor trigger data poisoning attack on
a machine learning model from the perspective of the data. We contribute a
new metric for the vulnerability of a sample to a backdoor attack, the poison
resistance score, and devise a correlation metric that can be used to compare
this to existing sample-level scores. We explore the poison resistance results
in the context of long tail theory and show that this score is representative of
the prototypicality of a sample. We also ask whether backdoor attacks affect
different classes of the data distribution differently and discover that in general
they do not, but the details of the attack strategy can cause a strong bias towards
certain classes. Finally, we briefly touch upon the effect of model architecture
on poison resistance, and find the resistance orderings of the samples to be
relatively consistent between architectures.
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1 Introduction

Machine learning has been vastly successful for a wide range of applications. Its
expanding scale has produced impressive progress and machine learning models
continue to find their way into production in many domains, including health-
care [52, 48, 44], retail and e-commerce [7, 37] and finance [28, 25, 32]. Un-
fortunately, these models are often brittle in the face of real-world complexity
and are prone to a variety of robustness issues that can have unpleasant con-
sequences at deployment time, such as overly-confident predictions [34, 22], the
inability to generalize to rare unseen events [2] and backdoors [16, 3]. Despite
the significant progress made in the development of deep learning models, our
understanding of their failure modes is still limited [4].

One major robustness issue for machine learning is data poisoning [27] whereby
an attacker attempts to manipulate the model’s behavior by introducing a small
amount of malicious samples into the training dataset. Broadly, there are two
forms of data poisoning attack: untargeted attacks, with arbitrary malicious
samples, and targeted attacks, in which the attacker integrates a backdoor into
specific inputs to evoke a specific misbehaviour from the model. In this project
we focus on targeted attacks. State-of-the-art machine learning models require
massive training datasets, which are often collected or crowdsourced from un-
trusted sources such as the internet. As a result, poisoning attacks pose a
realistic and significant threat to practical machine learning systems.

Recent work explores properties of the training data distribution and their im-
portance for model behaviors such as memorization [13]. Modern datasets can
be modeled as a long-tailed mixture of subpopulations, with the tail consist-
ing of subpopulations of rare, or underrepresented, samples. Memorizing rare
data samples that lie at the tail of the input distribution is an inherent and
essential property of modern overparameterized deep learning models [53]. The
requirement for machine learning algorithms to memorize in order to perform
well on common deep learning has largely been studied in the context of privacy
and fairness [14, 23, 8]. However, it may also have significant implications for
robustness [5], because this learning behavior shows that training samples are
treated differently by models based on whether they are rare with respect to
the data distribution.

The impact of targeted poisoning attacks on different types of data samples
remains largely unexplored. Existing work on poisoning attacks often measures
the impact of attacks for a set of uniformly sampled data points and appraises
the attack efficacy with regards to the model’s latent space. [46] Thus, the follow-
ing important question has remained unanswered: Are all types of data samples
equally robust against poisoning attacks? This subpopulation or sample-level
approach has been used to investigate other properties of ML models such as
privacy and fairness [1, 20], but not yet as extensively for robustness.

In this thesis, we study model robustness from the lens of the data distribution.
We examine the behavior of existing poisoning attacks on different parts of the
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data distribution by looking at attack efficacy on a sample-level granularity. To
this end, we look at the effect of poisoning attacks that target different types of
samples across a number of datasets and model design choices.

1.1 Contributions

We perform an empirical analysis as a series of experiments that investigate
existing poisoning attacks and their impact on different parts of the data distri-
bution. We pursue four facets of robustness in data poisoning attacks, namely:

1. We first propose a metric to define the susceptibility of individual
samples to backdoor data poisoning attacks: the poison resistance
score. We use this metric to investigate the impact of various properties of
poisoning attacks, such as the number of inserted samples, trigger position
and trigger size on individual samples. We show that some samples are
more resistant to backdoor attacks than others. We also note that in
general, larger triggers placed in the center of the image evoke a more
efficacious attack.

2. We then explore the relationship between data robustness and pro-
totypicality. We aim to identify a correlation between the poison resis-
tance score and consistency score [23] that acts as a proxy for prototypical-
ity. We also visually characterize the poison resistance score by exhibiting
samples with different scores. We introduce a metric that is designed to
measure correlation for buckets scores like our poison resistance scores.
Through visual corroboration, we confirm that poison resistance scores
are representative of prototypicality. However, they do not manifest a
strong correlation to consistency scores.

3. Next, we scrutinize the impact of poisoning data on a population
(class) level. Intuition and results about latent class representation from
other papers suggest that it may be easier to poison a class with a target
label from another class that is close in latent space. Hence, while still
looking at the mechanism of data poisoning from the perspective of the
data, we extend the exploration to a less granular level and look at the
behaviour of different classes under attack. We show that samples from
larger classes in unbalanced datasets are in fact more vulnerable to attack
if the poisoned samples are selected at random from the train set. On
the other hand, the backdoor label does not particularly affect the attack
vulnerability of the other classes.

4. Finally, we briefly consider the effect of model design choices such
as model architecture and depth, and validate the poison resistance at-
tack profile across different architectures. We find that the general attack
profile and the poison resistance score order is quite consistent across ar-
chitectures. Model depth in particular is shown to heavily impact the
attack tipping range. This topic has an immediate relation to the concept
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of fairness, and how machine learning models learn, or indeed memorize,
different subpopulations in different ways.

1.2 Thesis Outline

This thesis begins with an overview of the relevant background in Section 2.
This includes topics related to the data distribution and data poisoning attacks.
Using these foundational ideas, we then review related work in the area of
data poisoning attacks and the long tail in Section 3, gathering motivation
and hypotheses for our own analysis. In Section 4, we give an overview of
the experiment design, such as the datasets, frameworks and attack strategy
used. We then delve into the analysis in Section 5, where we pursue three
main research questions. Finally, in Section 6, we present the main conclusions
drawn from the analysis, evaluate the experiments in terms of meaningfulness
and applicability, and suggest areas for further exploration in this field.
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2 Background

In this section, we cover background material relevant to the thesis. We start
with a brief introduction to data in machine learning. Then we discuss the
mechanism of data poisoning attacks and their relevance, which is of central
importance to understanding the content of this thesis.

2.1 Machine Learning

The problem setting of machine learning can be formalised as follows: we let X
denote an input domain, which can for example be of data type vector or image.
The task is to learn an underlying target function f = X → Y on a training
dataset S := {xi, yi}, where y = f(x) is the label of the input x.

2.1.1 The long tail: data in ML

The quality and usefulness of any ML application relies first and foremost on
the data used to to train the model. The data used to ‘teach’ the model how
to subsequently classify any unseen sample is regarded as the ground truth: we
assume xi and yi perfectly represent the relationship between the input space
X and output space Y according to the unknown function f .

In reality, however, almost every realistic training set is plagued by noise, and
worse, in the case of purposeful malicious action, falsified and disturbed samples.
The training datasets that are popular today are often vast, scraped from un-
known sources and infeasible to manually vet: for example, the BookCorpus [56]
dataset that was used by early Large Language Models (LLMs) is collected from
the web and the source of the labels of the individual samples was not redacted.
The effect of such an imperfect training set seems to be highly dependent on
the samples it is evaluated on, both in the case of noise and in a poisoning
attack [38, 41].

One of the factors that we suspect causes this difference in attack efficacy is the
prototypicality of a sample. A modern data distribution typically follows a ’long-
tailed’ structure [21, 55]. This means that there are a large amount of samples
which consist of commonly occurring features, and a broad spread of samples
which consist of rarer features. As a result, the model will see many examples
of samples with certain common features, and learn to associate them with the
correct labels, whereas it will have few opportunities to learn the features of
the rare samples. An overparametrized model may resort to memorization to
‘hardcode’ the mapping between these rare features and their classes, whereas
a simple model may simply exhibit a lower accuracy on said rare samples. The
long tail therefore stands for underrepresented subpopulations of the dataset.
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Figure 1: A visualisation of the long tail in the CelebA dataset [31], showing
subpopulation sizes as decomposed by hair color [20]. The share of the training
set and the total frequency count is reported under each attribute sub-group.

2.2 Data poisoning

Data poisoning attacks are incurred through malicious training data collected
from untrusted sources which aim to deteriorate model accuracy. The problem
setting specifies to the following: the poisoned dataset S can now be decomposed
into S := {xi, yi}i∈I ∪ {xi, ŷi}i∈I′ . Here the set I contains samples with clean
labels and I ′ contains poisoned samples, where f(xi) ̸= ŷi.

These attacks can broadly be split into two categories, namely targeted and
untargeted attacks, which differentiate themselves in terms of the adversary’s
specific goals. Untargeted attacks aim to reduce the overall model accuracy
indiscriminately [47, 43], for example to impact availability. Availability is the
property of machine learning that describes the overall quality of a service,
which is typically related to model accuracy, i.e. its ability to correctly classify
all the data passed in for evaluation. In an untargeted attack, I ′ will include
samples across the entire data distribution and arbitrary target labels. In a
targeted attack, the adversary has a specific misclassification that they wish
to evoke. This can either be targeted on the input space, where they aim to
reduce model accuracy for some specific subpopulation, most likely on a certain
class [41, 8, 15], which I ′ is sourced from, or on the output space, in which case
they want to make all poisoned samples flip to a certain target class.

Another way of categorising data poisoning attacks is by attacker capability.
An attack can occur purely at train time or at train and test time. A train
time attack, as the name suggests, involves adversary action on the training
set, i.e. the adversary does not need access to the test data. There are other
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types of attack in which the adversary must tamper with both the training and
correspondingly with the test data to produce the desired malicious effect. A
backdoor attack falls into the latter category. It uses the concept of a trigger
(a perturbation of the input sample) to cause the misclassification of any input
sample with the same perturbed features. Thus all {xi}i∈I′ will incorporate a
perturbation, which may be a patch of pixels in an image or a particular phrase
in text-based data.

2.2.1 Existing data poisoning attacks and their relevance

Some of the most widespread data poisoning attacks [41] include:

• Feature Collision, where images are poisoned by adding very small per-
turbations to input samples such that their feature representation in latent
space is extremely similar to the clean sample [42].

• Convex Polytope, which crafts a perturbation such that the target’s
feature representation is a convex combination of the poison’s feature rep-
resentations [54].

• Hidden Trigger Backdoor Attack, in which a trigger is computed to
keep poisoned samples close to their base images but collide in feature
space with a perturbed image from the target class [39].

Backdoor trigger attacks have received significant research interest across diverse
settings. These include object detection [17, 8], where a flip in the prediction
of an object can be induced by a trigger, generative models [53, 40, 50] where
specified character sequences can be provoked by trigger phrases, and reinforce-
ment learning [51, 26], where the agent could learn to perform a malicious action
when the trigger appears in a specific state.

2.2.2 Centralised vs Collaborative Learning

There are two main main learning paradigms that differ in their training data
collection methods. Classically machine learning is a centralised mechanism,
whereby the model ’owner’ collects a train and test set and prepares and evalu-
ates the model on a centralized machine. The experiments in this project were
performed in a centralized setting and the topic of data poisoning is absolutely
relevant here, as nowadays the large datasets required for training are often col-
lected from untrusted sources such as the internet or other public user-created
content, making them equally eligible for data poisoning, and impossible to
manually corroborate for ‘cleanliness’.

On the other hand, collaborative learning is a paradigm in which a model is
trained across several decentralized devices with their own local data sets. Such
distributed learning settings are therefore particularly vulnerable to data poison-
ing attacks, as they (repeatedly) extract data from a large number of anonymous
participants, who by definition can introduce arbitrary data into the training
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process. This data can mostly, due to privacy concerns, not be explicitly cen-
trally validated or checked for poisoning.

Although the effects of data poisoning are lesser studied in a collaborative con-
text, the question of whether a targeted data poisoning attack on an ML model
is inherently more potent towards the long tail [43, 53] is very much valid in
both centralized and distributed settings.
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3 Related Work

This thesis presents an empirical analysis of the effects of a backdoor trigger
data poisoning attack on a machine learning model. There are several existing
bodies of research that build a backdrop for this exploration and offer certain
premises which motivate this thesis. In this section, we discuss work that is of
relevance to the various aspects of data robustness in an attack setting.

3.1 Machine learning from the perspective of the data

A traditional perspective on machine learning research considers the task at
hand in totality and assumes that all data samples are equally like to be mis-
classified by the model. Recent results suggest that data samples from different
parts of the data distribution are processed differently by ML models, resulting
in inconsistent performance. Interpreting the characteristics of ML models from
the perspective of the data is undeniably related to ethics, as in practice the
models are making decisions about datasets may represent human populations
and other social structures.

3.1.1 Fairness across the data distribution

Classically, an ML model is evaluated on the basis of metrics that express its
accuracy across the entire test set. However, there have been several works that
show that a model may not do justice to all samples of the test set equally. For
example Hooker et al [19] inspect the non-uniform impact of pruning deep neural
networks, where certain classes and samples are systematically more impacted
by the introduction of sparsity. These impacted images tend to be mislabelled,
of lower image quality, entail abstract representations, atypical examples or
require fine-grained classification. Moreover, Bagdasaryan and Shmatikov [1]
show that if the original model is unfair, the unfairness in fact becomes worse
once DP is applied.

When considering the dataset in less granular terms of subpopulations rather
than individual samples, Rose et al [38] use a subpopulation-targeted attack
to show that subpopulations near the center of the dataset tend to be harder
to attack, while subpopulations closer to the edges of the dataset are more
vulnerable. This motivates us to also consider the effects of data poisoning on
different data classes.

In this thesis we use such evidence of unequal treatment of different samples
and extend it to an attack setting to investigate the behaviour of a backdoor
trigger attack on various aspects of the data distribution.

3.1.2 Memorization

Although ML models are viewed as general function approximators, they have
often been observed to ”memorize” the features of atypical or noisy inputs. This
is mostly detrimental to generalization performance. Feldman [13] demonstrates
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that this over-parametrized fitting is crucial for optimal generalization error on
datasets composed of long-tailed subpopulation frequencies, which is typical of
image and text data. Subsequently Feldman and Zhang [14] further examine
this phenomenon by generating influence scores for MNIST, CIFAR-10, and
ImageNet, which measure the extent to which a model’s predictions change when
a sample is removed from the training set. This is an example of a sample-level
metric which relates the behaviour of a model towards an individual datapoint
to the sample’s atypicality. They validate these findings by visualizing samples
across the spectrum of their influence scores and also compare their results
across different model architectures. Memorization is a lucid instance of how
ML models consume and evaluate the long tail differently to the prototypical
data. This reinforces the hypothesis that the long tail may also be more or
less vulnerable to trigger backdoor attacks in comparison to the rest of the
data distribution. Recent works have attempted to combat this phenomenon,
for example by using targeted augmentation to help the model learn atypical
instead of noisy samples [12]. This shows that understanding ML behaviour
from the perspective of the data is a step towards devising methods to assure
fairness to all subpopulations represented in the data distribution.

3.2 Sample-Scoring Metrics

The experiments presented in this thesis revolve around a single metric for
sample-level robustness. We hypothesize that this metric may be related to
the location of the sample in the data distribution, i.e. its prototypicality. We
find many attempts to define a sample-level metric that acts as a proxy for
prototypicality in previous literature, almost always with regards to common
datasets such as MNIST and CIFAR-10. We expand on some of the most
interesting ones below:

1. Influence Scores: Feldman and Zhang examine the phenomenon of mem-
orization by generating influence scores for MNIST, CIFAR-10, and Im-
ageNet [14]. Pairwise influence scores are calculated for each training
sample at each test sample, and measures the extent to which the pres-
ence of the training sample affects the correct classification of the test
sample. The training sample is then given an overall influence score as an
expected average across all test samples. They validate their findings by
visualizing samples across the spectrum of their influence scores and also
compare their results across different model architectures to ensure that
the metric is model-agnostic. The paper finds the least influential samples
to be visually atypical and appear at most once in the whole dataset.

2. Adversarial Robustness Scores: Papernot et al explore the correlations
between five different metrics that represent prototypicality of a sample [6].
Amongst these, the Adversarial Robustness metric [45] relates most closely
to our own atypicality metric as it measures the required magnitude of the
data poisoning to force the misclassification of a sample. They also use the
correlations and disagreements of the metrics to identify different types
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of samples, such as “Memorized exceptions”, “Uncommon submodes” or
“Canonical prototypes” and finally do an exploration of whether training
on prototypes or outliers gives a higher overall accuracy. This research
also inspires us to compare and contrast the results of our metric with
another prototypicality metric.

3. Compression Identified Exemplars: Hooker et al look at the effect of model
compression on individual samples to identify those that are most chal-
lenging for human in-the-loop auditing[19]. The sparsity is varied between
a range of discrete options post-training before model evaluation. This ex-
periment relates closely to over-parametrized memorization.

4. Consistency Scores: Similar to influence scores, consistency scores (c-
scores) [23] test how individual samples are treated by an ML model by
measuring the influence of sample i on its correct classification by the
model. This is measured by the expected likelihood of the model to cor-
rectly classify sample i when sample i is excluded from the training set,
averaged across all possible training set sizes. The researchers then corrob-
orate that the score identifies out-of-distribution and mislabeled examples
at one end of the continuum of consistency scores and regular examples
at the other end. These empirical results are highly convincing visually
and the authors make the scores for CIFAR-10, CIFAR-100 and ImageNet
publicly available.

3.3 Backdoor Attacks

Backdoor attacks, a subcategory of data poisoning, have been studied in diverse
environments and implementations. Existing research shows, for example, that
the performance of poisoning attacks heavily depends on the samples used for
evaluation [41]. Some unified benchmarks for methodological evaluation of a
data poisoning attack have been conjured. The dataset used for assessment
also plays a significant role in the result. This serves as an indication that we
can expect samples to react differently to different attack strengths. Moreover,
Tang et al [46] reveal that the representation of an attack image is mostly
determined by the trigger: the 2D data representation of the image (as produced
through PCA) changes depending on the presence of the trigger during training,
indicating that the infected model likely identifies the source-agnostic trigger
separately from the original object in the input images, using the trigger as
an alternative channel to classify the image to the target label. This suggests
that the type and location of the trigger may impact the attack. Additionally,
the authors explore the potency of the attack and observe that even if the
poisoned images (0.5% of the train set, 200 samples in the case of MNIST) are
selected from a single class, a 50% global misclassification rate can be achieved.
The authors also note that selecting the poison images from more classes is
more effective in increasing the attack strength than increasing the number of
poisons.
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3.4 Robustness of Model Architecture

There is a large body of literature pertaining to the effect of model architecture
in an adversarial machine learning setting. There have been several general
results such as that model depth and width affect the model’s hidden repre-
sentations [35], or that aligning network architecture with the target function
would give more predictive representations under noisy label training [11]. Most
pertinent is the research of Sara Hooker which finds that models with radically
different numbers of weights have comparable top-line performance metrics but
diverge considerably in behavior on a narrow subset of the dataset, i.e. com-
pression has a disproportionately negative effect on atypical samples [19].

Combining this information creates a strong motivation to examine the effect
that model architecture has on sample vulnerability to backdoor attacks be-
cause we have grounds to believe that it affects latent representation, which
also encodes the backdoor trigger, and further that model capacity affects how
atypical samples are learnt.
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4 Analysis Methodology

The analysis described in Section 5 relies on a standardised experiment frame-
work that facilitates our research on different aspects of data poisoning.

4.1 Datasets

Our analysis focuses on three public image-based datasets:

• MNIST: MNIST [10] is a collection of images of greyscale handwritten
digits, each 28x28 pixels large. It is a subset of the NIST dataset and
includes samples from over 500 writers. It has 60,000 training images
and 10,000 test images, where naturally each image belongs to one of 10
classes, the digits 0 to 9. MNIST is an unbalanced dataset, with the digits
‘1’ and ‘7’ appearing most frequently in both the training and test sets.

• Extended-MNIST (EMNIST): EMNIST [9] is a dataset aligned closely
to MNIST. The training and test sets are also a subset of the same NIST
dataset and therefore have the same image dimensions and format. The
crucial difference between EMNIST and MNIST, and the reason that our
exploration extends to EMNIST, is that EMNIST is a balanced dataset,
with 6000 training images and 1000 test images from each class.

• CIFAR-10: The CIFAR-10 dataset [29] consists of images of 10 types
of common object/animal, such as airplane, dog or ship. It is balanced
and consists of 50000 training images and 10000 test images, of size 32x32
with three color channels.

We load these datasets from the torchvision [33] library and do not add any
augmentation or transformation apart from a normalization, which scales the
pixel values to [0, 1]. In order to avoid the influence of training hyperparameters
on the results, we decided to standardize these across the datasets, although the
two different tasks use different (specialised) model architectures 1.

EMNIST and MNIST CIFAR-10
Model simplenet resnet18
Epochs 50 50
Batch Size 128 128
Learning Rate 0.05 0.05
Decay 0.0005 0.0005
Momentum 0.9 0.9
Optimizer SGD SGD

Table 1: Training hyperparameters used for the three datasets
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4.2 Attack Strategy

We focus on the targeted balanced backdoor trigger data poisoning attack. The
goal of the adversary who induces this attack is to inject backdoors into the
target model and thereby train the model to misclassify the samples with the
backdoor trigger, while remaining accurate on the non-trigger samples. We
especially focus on attacks targeted in the output space of the problem: the
adversary selects the samples to poison at random but forces poisoned samples
to be misclassified as a certain target class. We assume a setting in which the
adversary has the ability to make any arbitrary changes to a set of samples from
the training set and re-insert these into the training set. However, they cannot
access the model itself and have no information or influence on the training
process.

We simulate the mechanism of this attack in the above setting as follows. The
model is being used for a task pertaining to dataset D = (X ,Y). Specifically,
Dtrain comprises all the data used to train the model, including the data sourced
from the malicious adversary, and Dtest is used to evaluate the model’s perfor-
mance. Dtrain and Dtest are drawn from the same distribution.

The attack AT,p,t is defined by the following parameters:

• The trigger T , which is defined by the trigger mask κ ∈ {0, 1}m×n and the
trigger pattern δ ∈ [0, 1]m×n, where (m, n) is the dimension of the images
in D.

• The attack magnitude, which is specified by the number of poisons p ∈
[0, |Dtrain|].

• The target label t. The adversary wants the model to misclassify all images
with the trigger as class t.

As we focus on a balanced attack, the adversary poisons the same number of
samples from each class of the dataset. If we let c denote the number of classes in
the dataset, then we effectively poison pc = ⌊ p

c−1⌋ samples from each class apart

from the poison label class. The contaminated train set D̄train and associated
test set D̄test is then created in a series of steps with regards to the attack
transformation AT,p,t:

• We randomly select pc samples Sc
p = {(x1, c), (x2, c), ...(xpc

, c)} ∈ Dtrain

from each class c apart from class t. We combine all these samples selected
for poisoning and denote this set as

Sp =
⋃

Sc
p, c ∈ (Y − t) (1)

• We add the trigger to each of the images x|(x, y) ∈ Sp in a process denoted
by

AT,p,t(x) = (1 − κ) ∗ x + κ ∗ δ (2)
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We flip the labels of these poisoned images to form a poisoned subset
Dmal = {(AT,p,t(x), t)|(x, y) ∈ Sp}.

• The full poisoned training set is formed as

D̄train = (Dtrain − Sp) ∪ Dmal (3)

The adversary wants the model to learn a function F = X → Y where
F (A(x)) = t for any x ∈ X .

• As we want to test the model prediction for every sample in the test set,
we add the trigger to all test samples 1:

D̄test = {(AT,p,t(x), y)|(x, y) ∈ Dtest, y ̸= t} (4)

The entire train set is then passed batch-wise to the model. At test time, we
record the success of the attack on every single test image.

4.2.1 The Postit Trigger

Generally, a trigger can be any perturbation defined by (κ, δ), the trigger mask
and the trigger pattern. In this exploration, we stick to a so-called Postit trigger,
which is characterized as a t× t patch of white pixels [18]. Therefore the trigger
pattern in this case will be filled with zeros except for the t × t trigger patch,
where it will be 1.0. We set a trivial mask which applies the same trigger to
every image.

Figure 2: Example EM-
NIST image with a 1x1 trig-
ger in the top left corner, af-
ter pre-processing.

Figure 3: Example CIFAR-
10 image with a 3x3 trigger
in the center (top left corner
at pixel (14, 14)), after pre-
processing.

1We remove all samples that belong to class t, as we cannot assess the effect of the trigger
on these samples.
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4.3 Framework

We implement this project in Python using the PyTorch library [36] in an exist-
ing codebase for ML-oriented experiments. The foundational pipeline that the
experiments in this project follow include dataset loading, preprocessing, trans-
formation and modification to simulate the backdoor contamination, synthesis
of the trigger, construction of the model, followed by training and testing. This
project most heavily relies on the sample-level result tracking, and extends the
code base with the inclusion of new (custom) models, new triggers types, several
pipelines for analysis of the sample-level experiments and graph generation.

The implementation of this project is integrated with the DoE-Suite [30], a tool
for managing and orchestrating remote experiments. The tool allows researchers
to define experiments using a declarative specification format, to ensure a re-
producible and efficient execution of experiments and processing of experiment
results. We submit the experiments to the Euler compute cluster where they
run remotely on a GPU.
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5 Analysis

Our analysis of the effect of backdoor poisoning attacks on the data is structured
around the following three research questions:

1. What does the poison resistance score express about the vul-
nerability of sample? Overall, how does the number of poison samples
at train time affect the total number of affected samples at test time?
Does it show some samples are easier to attack than others? How does
the choice of trigger play a role? Is poison resistance representative of
prototypicality?

2. How does class membership affect the poison resistance score of
a sample? How does this change depending on the exact attack strategy?
Does the backdoor label play a role?

3. How does model architecture affect the poison resistance scores?
Specifically, how does model depth affect the model’s response to the at-
tack?

5.1 Poison Resistance Metric

The analysis to follow is based on the hypothesis that the samples of a dataset
will exhibit different levels of sensitivity to trigger-based backdoor attacks, which
intrinsically necessitates a method of comparison between the samples. A central
aspect of this thesis is the definition and exploration of the poison resistance
score, a metric used to measure the vulnerability or sensitivity of a sample to a
backdoor poisoning attack.

We define the poison threshold of a single test data sample (x, y) as

thresh(s) = minp|F (AT, p, t)(x) = t (5)

i.e. the lowest number of poisons required to evoke the misclassification of s at
test time (the function F is the function underlying the data set, and A is the
attack function defined in Section 4.2.Here it is important to note that due to
computational complexity, we do not find the exact number of poisons required
to misclassify s, but rather p belongs to a set of discrete attack magnitudes that
we test for.

With this threshold we define the poison resistance score, specific to an individ-
ual sample s, as

pr(s) =
thresh(s)

|Dtrain|
. (6)

This score will lie between 0.0 for a sample that is misclassified even in an
uncontaminated model and 1.0 for a sample that is not misclassified even if
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all training samples are poisoned. A higher score indicates the sample is more
resistant to a backdoor poisoning attack. The poison resistance score therefore
measures the difficulty of convincing the model that the sample belongs to the
target class by the presence of the trigger.

It is worth noting that there are samples which do not adhere to a single tipping
point, i.e. they are misclassified at p1 poisons but then are correctly classified
in another run with p2 poisons where p1 < p2. We refer to these as ambiva-
lent samples. Ambivalent samples are relatively rare but their presence varies
from dataset to dataset: they constitute 2122 of the test samples in the run
corresponding to Figure 4 for EMNIST and 567 of the test samples in Figure 6
in CIFAR.

5.2 Exploring the Poison Resistance Metric

In this section of the thesis, we explore the meaning and usefulness of the poison
resistance score.

5.2.1 Are some samples easier to attack than others?

The idea that poisoning more training samples will cause the misclassification
of more test samples makes sense from our understanding of how ML models
learn: the trigger is a very consistent and strong feature of the poisoned images
which the model can use to classify the target class t. Thus the more such
poisoned exemplars the model sees, the more strongly it learns to associate it
with the target class, and the more willing it becomes to misclassify a sample,
regardless of its other features which may be indicative of its true class. In
order to corroborate this hypothesis empirically, we first explore the question
how does the number of poison samples at train time affect the total number
of affected samples at test time? We vary the attack magnitude and assess the
total number of affected samples at test time for EMNIST and CIFAR-10 with
a SinglePixel trigger (dimension 1x1) placed at (3, 3).

As shown in Figures 4 and 6, in general and as expected, the more samples
we poison at train time, the more samples are later affected at test time. This
simultaneously confirms that some samples require more poisons than others
until they succumb to the attack. For EMNIST we note that the training
accuracy typically converges to 99.5%; we need merely 90 poisoned samples,
which corresponds to 0.15% of the training set, to evoke a 50% attack efficacy,
i.e., 50% of test set samples with triggers are misclassified. With 400 poisoned
samples, which is still only 0.66% of the training set, we approach a 100%
attack efficacy. For CIFAR10, the training accuracy converges around 94%.
Interestingly, for CIFAR we require fewer poisons (around 50, or 0.08%) for
50% attack efficacy, but significantly more poisons (up to 2000, or 3.33% of the
test set) to cross even 90% efficacy. Thus CIFAR seems to include more images
that are strongly resistant to the poisoning attack.

We verify that this relationship is not affected by randomness by running each
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Figure 4: Proportion of affected
samples vs attack magnitude for
EMNIST, SinglePixel Trigger

Figure 5: The tipping range for EM-
NIST with a SinglePixel Trigger.

Figure 6: Affected Samples vs Attack Magnitude for CIFAR, SinglePixel Trigger

Figure 7: The tipping range for CI-
FAR with a SinglePixel Trigger.

Figure 8: Some samples in CIFAR
are strongly resistant and require up
to 2000 poisons to be affected.
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of the experiments with two further random seeds (9, 10). The random seed
affects three main aspects of the experiment:

• The initial values of the network’s weights and biases.

• The order in which the training data is processed by the DataLoader (the
data is shuffled from its original ordering).

• The selection of training samples to poison with the trigger.

Figure 9: Random Seeds 53 and 88
for CIFAR.

Figure 10: Random Seeds 72 and 88
for EMNIST.

We conclude that the overall trend remains the same between random seeds.
The Kendall correlation between random seeds holds to a high degree.

There is a visible range of attack magnitudes in which a large proportion (around
50%) of the test time samples succumb to the attack. We refer to this range as
the tipping range, which may correspond to the bulk of the data distribution.
We focus on this range and increase the granularity of the attack magnitude
steps in order to generate a more fine-grained set of poison resistance scores.
We see that this range varies slightly from dataset to dataset; for CIFAR it
occurs between 20 and 80 poisons and for EMNIST it is somewhat more con-
centrated between 60 and 90 poisons. Moreover, we note that the relationship
between attack magnitude and attack efficacy is not strictly increasing; clearly
the number of samples that can be affected plateaus or even slightly dips at
times. For certain random seeds we notice sudden dips in attack efficacy that
arise consistently at the same attack magnitude across experiment repetitions.
These have been excluded from the main analysis as they constitute outlier re-
sults but are exhibited in Figure 26 in the Appendix. Such anomalous responses
to an attack could potentially be traced back to the network’s initialisation and
could be the subject of further exploration.

We notice that the long tailed data distribution is reflected in these results.
There are a small number of samples which are most vulnerable and are easily
flipped, corresponding to the long tail. These are followed by the bulk of the
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Figure 11: Attack on CIFAR with three different trigger sizes: 1x1, 3x3 and 5x5

typical data, which all succumb around the same attack strength. There then
appear to be a small set of samples which are very resistant to the attack and
require large additions of poisons to be misclassified. These may be the most
typical samples of the dataset. This distribution corresponds to our hypothesis
that poison resistance is indicative of prototypicality.

5.2.2 Trigger size and location matters.

As discussed in Section 4.2.1, our attack strategy employs an unconcealed Postit
trigger. For a dataset where each sample has dimension n × n, the Postit
trigger can be configured by two parameters, namely its size t ∈ [1, n] and the
coordinates (x, y) of its top left corner, where x, y ∈ [0, n− t]. In the following,
we present empirical results on the effect of trigger location and size on the
efficacy of a backdoor trigger attack on EMNIST and CIFAR.

The effect of the trigger size on the attack is both lucid and expected: we vary
the trigger size between m ∈ {1, 3, 5} whilst keeping (x, y) = (3, 3) constant in
CIFAR and observe that a larger trigger causes more misclassification at a far
lower number of poisons; in particular the tipping range is lower for a larger
trigger (Figure 11. This can be interpreted and understood by the fact that a
larger trigger perturbs more pixels (the number of perturbed pixels increases
quadratically in m) and therefore has a larger influence on the final prediction,
which is a function of these pixel values. In parallel, because we do not use any
masking, the true pixel values are completely lost under the trigger.

We also investigate the effect of the trigger location on attack efficacy with a
1× 1 trigger (Figure 12). We notice remarkable differences between placing the
trigger pixel in the top left corner at (0, 0), in the top left area at (3, 3) and in
the center of the image at (14, 14). The backdoor attack is far more efficacious
at (3, 3); the corner and center attacks require 5-6 times the amount of poisons
to start having an effect.
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Figure 12: Attack on EMNIST with a 1x1 trigger in three different locations:
SingleTopLeft = (0, 0), SinglePixel = (3, 3), SingleMiddle = (14, 14)

There are two aspects of the training process that may explain this behaviour.
Firstly, the networks used for both EMNIST and CIFAR involve multiple con-
volutional layers without padding. This means that the pixels in the corners
of the image are very minimally weighted, and their values are barely carried
forward towards the final prediction at all. This model architecture is good
for typical image detection as the as the outermost corners of the image rarely
contain useful information for the classification, however it also thwarts the ad-
versary goal by disregarding the trigger. For the (14, 14) case, however, this
same justification cannot apply as the pixel is in the center of the image. In
fact, for EMNIST, the (14, 14) pixel is likely to include some image content,
i.e. the digit may cover this pixel. As exemplified in Figure 13, we see that
the EMNIST foreground is white whereas the background is dark. Thus it is
apparent that the trigger at (14, 14) may not affect the image at all, as the
pixel may have had the same value in the original uncontaminated image. The
label flip will therefore not be accredited to the trigger, although it may slightly
lower the model accuracy in general, and therefore significantly more poisons
are needed to approach the tipping range.

Given these results, we choose to stick to a SinglePixel trigger located at (3, 3)
for the analysis in this project. This enables us to generate fine-grained poison
resistance scores as the tipping range occurs in a more staggered fashion.

5.2.3 Is poison resistance a good proxy for prototypicality?

Following our initial exploration of the poison resistance metric and its be-
haviour with regards to randomness and trigger parameters, we come to the
second research question of this thesis: what are the characteristics of samples
that are very vulnerable or very resistant to trigger backdoor attacks?

One approach to gaining an intuition for the significance of the poison resistance
scores is by visual inspection of the images across the score distribution from
the results in the previous section. In Figures 14, 15 we provide some randomly
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Figure 13: Two sample EMNIST figures in which pixel (14, 14) is already fully
white.

selected sample images corresponding to the EMNIST attack from Figure 4
and the CIFAR attack from Figure 6. Each row depicts at most ten randomly
selected images with the poison threshold indicated to the right of the images.
From this visualization we gather certain observations and ideas:

• Different classes have different poisonability distributions. Before
assessing individual samples, we already notice some class-level behaviour
simply through the number of images on each row of the exemplars. The
figures reveal that there is an unequal amount of samples from each class
being affected by the attack at each poison level. For instance, the class 1
in EMNIST includes only one single sample with a poison threshold above
150: all the other samples succumb to the attack earlier. Although less
acute, we see a similar pattern in class 9 or the ships class of CIFAR-10.
This indicates that certain classes may be more or less poisonable than
others and we explore this further in Section 5.3.

• Poison vulnerability score often appears to be indicative of pro-
totypicality. EMNIST is an ideal dataset for visual results corroboration
as it is easy to manually gauge the atypicality of a particular image. In
EMNIST, we see strong indications for a correlation between poison resis-
tance and prototypicality. We note that the few samples with the lowest
poison threshold, in class 2 for example, are true outliers, potentially sim-
ply mislabelled samples. In general, as we scan the examples from top
to bottom, they become more intelligible and contain fewer skewed or
smudged digits. Although CIFAR10 is a more complex task type to rea-
son about in this manner, we can for example see in the horse class that
the most resistant samples consistently depict a horse from a perfectly
sidewards angle, whereas the first samples to be poisoned show the horse
in an action shot or otherwise oriented. The most vulnerable deers and
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(a) Class 1 EMNIST: sample im-
ages across the poisonability dis-
tribution

(b) Class 9 EMNIST: sample im-
ages across the poisonability dis-
tribution

(c) Class 2 EMNIST: sample im-
ages across the poisonability dis-
tribution

(d) Class 6 EMNIST: sample im-
ages across the poisonability dis-
tribution

Figure 14: Sample images across the poisonability distribution for four classes
in EMNIST dataset
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dogs, too, seem to be distant, camoflauged or blurred in comparison to
their typical, more resistant counterparts.

• Particular features make a sample more vulnerable to attack.
Curiously, there are some apparent differences in the least and most vul-
nerable samples that cannot be directly accredited to typicality: for ex-
ample, in the 6 class, we notice that the most vulnerable images portray
a digit 6 with a rather straight downwards line and small loop, which be-
come progressively curved and larger respectively as the samples become
more resistant. Likewise we note that the slant of the 1 seems to relate to
its poisonability.

5.2.4 Does poison resistance correlate to other metrics for prototyp-
icality?

Aside from this visual validation, we draw upon existing literature and substan-
tiate the hypothesis that poison resistance scores are indicative of prototypicality
by comparing them to another existing metric for prototypicality, namely the
Consistency Scores (c-scores) from [23].

Jiang et al define the consistency profile of a single sample (x, y) by increasing
the size of the training set, which specifically excludes (x, y), and measuring
the expected likelihood that the model correctly classifies (x, y) at train time
at each training set size. This is condensed into a single score by taking the
average of these expected values over each of the training set sizes that they
took measurements for. Thus the c-score is an intuitive measure of how well
the model can generalize for a certain sample; the higher it is, the more ‘well-
learnt’ it is. The c-scores lend themselves well to our comparison as they do
not bear a relation to poisoning attacks but produce very visually convincing
results for prototypicality. The authors published the precomputed c-scores for
the CIFAR-10 trainset.

Before being able to use the published c-scores, we had to adjust for a mismatch
between the c-scores and our poison resistance scores. The definition of the
poison resistance score makes it well suited to the test set of a dataset, as we
use the training set to introduce the poisons and can then evaluate the effect of
these at test time. However, as the c-scores are published for the CIFAR train
set, we adapt our training pipeline to generate poison resistance for the same
dataset. We split the CIFAR trainset into 5 batches of 10000 samples each.
Then, we perform each experiment 5 times, using one of the batches as the test
set, and the other 40000 samples as the training set each time. Therefore after
each of these iterations, we record sample level results for 10000 of the 50000
samples, and finally combine them to produce poison resistance scores for the
entire CIFAR-10 trainset.

Another consideration when generating the poison resistance scores is the se-
lection of the poison levels that we make measurements for. In contrast to
the c-scores, the poison resistance score is not a continuous metric but rather
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(a) Class 8 CIFAR10: sample im-
ages across the poisonability dis-
tribution

(b) Class 7 CIFAR10: sample im-
ages across the poisonability dis-
tribution

(c) Class 5 CIFAR10: sample im-
ages across the poisonability dis-
tribution

(d) Class 4 CIFAR10: sample im-
ages across the poisonability dis-
tribution

Figure 15: Sample images across the poisonability distribution for different
classes in CIFAR10 dataset.
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produces a bucketed ordering. If we select n discrete poison levels [p1, p2...pn],
every sample will be assigned one of n poison resistance scores, depending on
its poison threshold. Therefore the selection of the poison levels is crucial to
generating a meaningful ordering.

We choose the poison levels by first identifying a range of samples in which all
of the samples are misclassified due to the trigger, i.e.

pmax|AT,pmax,t(x) = t ∀(x, y) ∈ Dtrain (7)

Then, we use a binary search-like approach to placing the new poison levels:
we find the attack efficacy for pmax/2 poisons, and then see on which side of
pmax/2 the tipping range occurs. In this section we again measure the attack
efficacy at the median number of poisons and repeat this process until we have
a collection of markers in which the increase in affected samples between two
adjacent poison levels is no more than around 10% of the test set size.

Jiang et al [23] produce the consistency scores for the CIFAR-10 training set
from a custom InceptionNet model. In order to standardise for the differences in
image processing and attack response between model architectures, we replicate
this exact model from the source code of the c-score project in our own pipeline.
InceptionNet is, with 8 convolutional blocks followed by a linear layer, a simple
architecture in comparison to Resnet18. It converges to 91% accuracy for the
CIFAR10 training set.

Quantile Correlation Metric The Pearson and Kendall’s Tau ranks are
commonly used measures for correlation. They differ in that the Pearson score
assumes that the variables are normally distributed and linearly correlated.
Pearson’s correlation is also more sensitive to outliers. Our poison resistance
scores achieve an 8.9% Pearson correlation and 22.3% Kendall’s Tau correlation
with the c-scores which is to be expected given the aforementioned differences
between the two metrics - Kendall’s Tau is fundamentally better suited to the
poison resistance scores and underlying data, especially as in takes into consid-
eration the ordering of the samples more than the explicit values. However, both
the Pearson score and the Kendall’s Tau expect to compare two total orderings
over a set, whereas poison resistance proffers a bucketed metric. In order to have
a correlation score that corresponds more closely to this type of distribution,
we propose the quantile correlation metric.

The quantile correlation metric is designed to detect correlations between a
bucketed ordering Ob and a total ordering Ot. The bucketed ordering induces
a finite list of quantiles 0.0, q1, q2...qn, 1.0, which are the bounds between the
different score buckets expressed as a proportion of the magnitude of the set,
|Ob| = |Ot|. In our experiments, these quantiles are implicitly defined by the
discrete attack magnitudes that we select.
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Example: Calculating the Quantile Correlation Score
The quantile correlation metric is calculated as follows, as demonstrated
on an example: we have 10 samples a1...a10 for which we have a bucketed
metric that we sort in ascending order by score:

Ob : a3 = 0.0, a4 = 0.2, a7 = 0.2, a6 = 0.2, a10 = 0.5, a9 = 0.5, a8 =
0.75a1 = 0.75a2 = 0.75, a5 = 1.0.

We also have a total ordering on the samples (for example c-scores), which
we also sort by score:

Ot : a1 = 0.01, a6 = 0.18, a7 = 0.23, a5 = 0.24, a10 = 0.55, a3 = 0.57, a2 =
0.6, a8 = 0.88, a9 = 0.96, a4 = 0.98.

Figure 16: The two orderings on the same 10 samples, both sorted in
ascending order.

The bucketed ordering gives rise to the quantiles Q = 0.0, 0.1, 0.4, 0.6, 0.9,
1.0, corresponding to 5 distinct score buckets.
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Figure 17: The quantiles are defined by the bucketed scores as a proportion
of the set size.

The quantile correlation measures, for each bucket in Ob, how many sam-
ples fall into the same proportional bucket of Ot. Here, we see that this
applies to the five samples a6 and a7 from the second bucket, a10 from the
third bucket, and a8 and a2 from the fourth bucket. There are 10 samples
in total, therefore in this example QC(Ob,Ot) = 5/10 = 0.5.

Figure 18: The quantile correlation score counts how many samples appear
in the same quantile across the two scores.

The quantile correlation can be mathematically expressed as
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∑|Q|
i=1 |{a ∈ Ob[qi−1 : qi]} ∩ {a ∈ Ot[qi−1 : qi]}|

|O|
(8)

where O[a : b] denotes the set of samples that fall in the range of a and b of
the ordered scores. This method of calculating a correlation therefore takes into
account that one of the orderings is much coarser and will have many repeated
scores, as is the case for the poison resistance metric.

Entire PR distribution Lowest 10% Top 10% Middle 10%
Pearson Correlation 0.0895 0.0972 0.1010 0.0942
Kendall Correlation 0.2233 0.2600 0.2544 0.2256
Quantile Correlation 0.1431 0.1241 0.0616 0.0846

Table 2: Correlation between poison vulnerability scores and consistency scores
of CIFAR-10 trainset

We generate correlation scores for the entire dataset, but also for specific stratas:
we consider the lowest 10%, corresponding to the most vulnerable samples, the
top 10%, corresponding to the most resistant samples, and also the middle 10%.
For the quantile correlation metric we use the first, last and middle bucket
respectively. The Pearson correlation scores indicate an almost non-existent
correlation, whereas the Kendall’s Tau scores are somewhat higher and indicate
a low to moderate correlation. Kendall’s Tau is likely more appropriate for
this use case as it takes the ranking of the scores, rather than their explicit
values, into consideration. Even the quantile correlation scores are rather low;
nevertheless, comparatively across the distribution, the most vulnerable samples
seem to correlate more. 12% of the samples in the first poison resistance bucket
appear in the lowest 10% of the poison vulnerability scores, whereas only 6% of
the top 10% overlap.

While these results are not indicative of a strong relationship between poison
resistance and consistency scores, they open up a host of questions for further
exploration. As visually both consistency scores and poison resistance scores
seem to indicate the prototypicality of a sample, we may want to more closely
inspect the those which constitute the overlap between the two metrics; on the
other hand we wonder what the disagreement of the two metrics expresses with
respect to how they are calculated. We also take into consideration that perhaps
class membership strongly influences the the poison resistance score, which is
incorporated in the sample’s rank in the continuum.

5.3 How does class membership affect the vulnerability of
a sample?

In this section we look at the effect of a backdoor trigger attack on the data
distribution not from the lens of the features of an individual sample but rather
whether class membership intrinsically affects the susceptibility of the data to a
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(a) An unbalanced attack on CIFAR10 (b) An unbalanced attack on EMNIST

Figure 19: Comparison of unbalanced attacks on CIFAR10 and EMNIST
datasets

particular attack. There have been many foundational explorations to visualize
the internal representation of classes within ML models [49, 24] which have led
to the understanding that in latent feature space, the model projects samples
from the same class into a grouped region. Therefore in this section we strive
to answer the question: Does the influence of the trigger feature in the flipped
samples have a disproportional effect on certain classes?

5.3.1 Balanced vs unbalanced attacks

An important realization within the exploration of data vulnerability is that
the exact semantics of an attack can strongly predispose the results. In Section
4.2, we explain our attack strategy for a balanced backdoor attack, where we
select an equal amount of samples to poison from each of the non-backdoor
label classes. An unbalanced attack eliminates this constraint and randomly
selects p samples to flip from the entire training set, regardless of class. In a
balanced dataset, the balanced attack is a prudent control measure: due to the
equal class size, in expectation we would randomly select an equal amount of
poisons from each class anyhow. We confirm this by running an unbalanced
attack on CIFAR10 and EMNIST and obtain an attack response curve (Figure
19 virtually identical to that of a balanced attack (Figure 6, 4).

However, realistically, training datasets are often unbalanced. This applies par-
ticularly to distributed settings where the central orchestrator cannot vet or
artificially balance out the data entering the model but rather collects data
from classes proportional to their appearance in the environment. In an attack
setting, as the random selection of samples in an unbalanced attack is uniform
across the training set, probability-wise we will poison more samples from the
larger classes. To further inspect the effect of this bias, we avail ourselves of
the MNIST dataset. Both the train and test sets of MNIST present a slight
imbalance (Figure 20, with 1s and 7s appearing slightly more frequently than
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(a) MNIST train set class distribution (b) MNIST test set class distribution

Figure 20: MNIST train and test set class distributions

the other classes, and 5 being the least frequent class.

We run an unbalanced attack on MNIST while otherwise maintaining the same
configuration as for EMNIST. While the attack profile across all samples appears
predictable, when we decompose the results into a per-class basis (Figure 21),
we notice an interesting trend: class 1 dominates all others in the proportion of
affected samples, experiencing its tipping point earlier than all the other classes
and remaining highly vulnerable as the number of poisons increases beyond that
threshold. At 40 poisons, as the attack begins to work for the other 8 classes,
almost half of the samples belonging to class 1 are affected by the attack. In a
similar fashion, class 7 is invariably the second most affected class. The attack
response is amplified manifold in comparison to the class frequencies.

The parallel between the vulnerability of the samples from each class and the
size of the class is striking and can likely be traced back to the attack heuristic.
Even at a low total number of poisons, the small difference in the number of
samples selected from each class teaches the model to associate the trigger more
heavily with the most frequently occurring classes. Superficially, this would
indicate that certain classes contain more vulnerable samples than others, but
the disparity between classes is not necessarily representative of vulnerability
but rather originates from the poison sample selection. In order to avoid this
propensity we focus on balanced attacks in all other sections.

5.3.2 Effect of Backdoor Label

When we flip the label of a poisoned sample, we are teaching the model to use
the trigger to identify members of the backdoor label class t. This gives rise
to another question: Does the choice of poison label make some classes more
vulnerable than others? Following the results from an unbalanced attack, we
return to the balanced attack setting for EMNIST. Thus far we had always
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(a) Attack profile of an unbalanced at-
tack on MNIST

(b) Class decomposition of attack effi-
cacy

Figure 21: MNIST unbalanced attack results

used the backdoor label 0; now we try setting it to a few different classes.
The results (Figure 22) show that changing the poison label can somewhat
vary the tipping range of the attack - label 9 is for example consistently less
efficacious than label 0 - however, all labels have similar attack profiles and
converge to the same efficacy. If we consider the class breakdown of each attack,
we firstly notice yet again that class 1 is visibly the easiest to attack, regardless
of poison label. However, as the second most frequently occurring class (7) is
not particularly vulnerable, we do not attribute this to the class frequencies.
We speculate the high poisonability of class 1 may be due to the simple quality
of the digit 1; it has few features and thus not many pixels affect the model’s
prediction; the addition of the trigger may more easily override the model’s
understanding of what demarcates a 1. However, this is speculative and requires
further experimentation to verify.

There are various techniques of visualizing the samples of a dataset in a 2D
space, such as t-SNE, PCA or even using the latent feature representation.
What all of these methods have in common is that they produce a data map
with the samples of each class clustered together and certain classes bordering
each other. We originally hypothesized that the distance between classes would
correlate with the pairwise poison resistance of the poison label class t and
another class c, specifically the closer together t and c lie, measured in Euclidean
distance, the fewer poisons will be required with label t to affect the majority of
samples in c. However, the findings (Figures 23 suggest that the vulnerability
of a class is independent of the poison label, as the classes 0, 1, 6 and 9 are
consistently the most affected by the attack. This supports the idea that the
model uses the trigger as a separate input channel when classifying the image.
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Figure 22: Attack profile of a balanced attack on EMNIST with different poison
labels.

5.4 Model Architecture

We finally perform a small investigation into the effect of model architecture on
poison resistance scores. This is inspired by the understanding that architecture
strongly influences how models learn; an appropriate example is the research
showing that overparametrized models memorize rare samples [14].

5.4.1 Resnet vs VGG vs InceptionNet for Cifar10

We run an attack on CIFAR-10 trained on three different types of models (Figure
24). Aside from the overall attack profile, we are interested in checking the
behaviour of the poison resistance scores with different model architectures.
This serves both the purpose of verifying the robustness of the metric and
in parallel exploring the reaction of different model types to different attack
strengths.

Resnet VGG InceptionNet
InceptionNet 0.767 0.793 /
Resnet / 0.716 0.767
VGG16 0.716 / 0.793

Table 3: Kendall Tau’s correlation between poison vulnerability scores of the
different models

As the correlation between the orderings is strong regardless of the model, we
confirm the validity of the poison resistance metric, as the prototypicality of a
sample within a dataset should not change depending on model architecture.
Of course, the difficulty of classifying a sample is inherently dictated by the
model, which accounts for the imperfect correlation, but in general we note
that Resnet18, InceptionNet and VGG16 seem to be comparable in how they
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(a) Class breakdown of attack with
poison label 0

(b) Class breakdown of attack
with poison label 1

(c) Class breakdown of attack with
poison label 4

(d) Class breakdown of attack
with poison label 6

(e) Class breakdown of attack with
poison label 7

(f) Class breakdown of attack with
poison label 9

Figure 23: Class breakdown of attack with different poison labels in EMNIST
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Figure 24: Attack profile of a balanced attack on CIFAR with on Resnet, VGG
and InceptionNet.

VGG11 VGG13 VGG16 VGG19
VGG11 / 0.533 0.672 0.776
VGG13 0.533 / 0.758 0.643
VGG16 0.672 0.758 / 0.808
VGG19 0.776 0.643 0.808 /

Table 4: Kendall Tau’s correlation between poison vulnerability scores of the
different VGG models with different depths

treat different samples in a backdoor attack. Nevertheless, poison resistance
scores should be quoted with regards to the model that generated them.

5.4.2 Model depth

Following the previous results, we have reason to believe that model architec-
ture does influence the vulnerability of individual samples. Now we try to isolate
certain characteristics of model architecture to pinpoint what causes these dif-
ferences and how. A property of model architecture which is known to influence
how rare samples are processed is model size, measured by the number of nodes
(parameters) in the network. One of the ways of influencing the total number
of parameters of an ML model is by varying the model depth, i.e. the number
of layers the model has. In order to test the effect of the model depth on at-
tack profile, we repeat the same attack multiple times with three VGG models
of different depths. VGG models are constructed by a series of convolutional,
batch normalisation, and ReLU layers, and the different variants differ in the
number of layers it includes.

Although we refrain from narrowing in on the tipping range of the attack, we
already observe that the depth of the model seems to noticeably affect the
tipping range of the attack (Figure 25). At first sight the depth does not have a
clear positive or negative correlation with the tipping range, yet these differences
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Figure 25: Attack profile of a balanced attack on CIFAR with different VGG
variants.

are striking and unlikely to be caused by randomness because the tipping range
for CIFAR in the models we has considered previously tended to always fall
within the 50-100 range. Moreover, for this random run the correlations between
the poison resistance orderings exhibit a very distinct trend: the greater the total
depth of the two models, the more similar their results for the poison resistance
scores of the dataset.
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6 Conclusion

In this thesis, we explore the issue of data poisoning attacks on machine learn-
ing models, which can have significant consequences on the model’s robustness
and real-world performance. We investigate the impact of poisoning attacks on
different types of data samples and propose the ‘poison resistance score’ that
represents the susceptibility of individual samples to backdoor data poisoning
attacks. We then explore the relationship between data robustness and proto-
typicality and scrutinize the impact of poisoning data on a population (class)
level. Finally, we consider the effect of model design choices on the efficacy of
poisoning attacks on the data distribution.

The key insights from our analysis revolve around the poison resistance metric.
We show that the parameters such as the selection of poison samples, trigger
configuration and model depth all influence the the poison resistance metric and
its distribution across the dataset. There is a clear difference for the metric for
different samples, which may relate to their features and how well-represented
they are, and depending on attack heuristics, possibly which class they belong
to.

We show that this metric is visually representative of prototypicality of samples.
Furthermore it shows a high consistency and regularity across model architec-
tures. However, we cannot confirm a correlation to another metric for proto-
typicality. This suggests that the poison resistance metric is useful for profiling
the response of a model as a whole to different attack strengths. It is also useful
for identifying typical and atypical samples at the extrema of the spectrum.
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7 Future Work

This thesis aims to provide some insights on the sample-specific behaviour of
samples in the face of backdoor attacks. However, our results give rise to a host
of further questions which could provide directions for further research. In the
following, we present suggestions for future work that would allow us to better
understand the model and the data-specific response to backdoor attacks:

Tipping Range: We consistently observed the notion of a tipping range (5.2.1
in the attack response. Often we could narrow it down to a tight tipping point,
where suddenly a large proportion of samples would be flipped by the attack. It
may be interesting to study the correlation between the tipping point and other
attack parameters, as well as more closely investigating why it occurs at all.

Granularity of Poison Resistance Scores: We generate the poison resis-
tance scores in a bucketed style, which allows for a less precise comparison of
the samples. As it is computationally expensive to train the model with many
granular number of poisons, it could be useful to conjure a proxy to compute the
poison resistance score, or an approximation therefore, more efficiently, which
allows for more granular scores. These then become more valid in conjunction
with classic correlation metrics.

Characterizing Vulnerable Samples: The poison resistance metric helped
us identify vulnerable and resistant samples in the attack setting. However, we
were only able to examine the characteristics of these at a high level. A rigorous
investigation may include inspecting the Euclidean distances of these samples
to the bulk of the data in model latent space, or some other dimensionality
reduction technique. It may also be interesting to consider the loss values for
each sample. This may later help devise methods to mitigate the dispropor-
tionate response of the machine to the attack with regards to different types of
samples.
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Effect of labeling algorithms on financial performance metrics. In 2022
45th Jubilee International Convention on Information, Communication and
Electronic Technology (MIPRO), pages 980–984. IEEE, 2022.

[29] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian
institute for advanced research).

[30] Nicolas Küchler, Miro Haller, and Hidde Lycklama. DoE Suite. https:

//github.com/nicolas-kuechler/doe-suite/, 2022.

[31] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning
face attributes in the wild. In Proceedings of International Conference on
Computer Vision (ICCV), 2015.

[32] Rama K Malladi. Application of supervised machine learning techniques to
forecast the covid-19 us recession and stock market crash. Computational
Economics, pages 1–25, 2022.
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A Appendix

Figure 26: Anomalous runs for EMNIST
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