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Abstract
In recent years, we have witnessed a significant increase in interest and adoption
of strict data privacy controls across organizations. This development is primarily
attributed to a general shift in public perception of privacy and the pervasiveness
of data misuse and breaches. New data privacy systems are emerging and pro-
gressively find their way into existing data systems.

These privacy developments raise a new fundamental challenge in existing data
systems, namely privacy management. Privacy presents some unique constraints,
and this includes dealing with a heterogeneous set of privacy policies (in all user-
centric systems and, e.g., due to different jurisdictions) and managing limited,
non-replenishable resources (what we call a ”privacy budget”). Hence, this neces-
sitates new solutions that are tailored to privacy.

In this thesis, we address the following challenges in the privacy management
lifecycle:

• Designing generic privacy controls and mapping them to a set of allowed
privacy transformations based on data type and application.

• Developing methods to manage privacy resources that arise from associated
privacy controls.

In this work, we propose a privacy management system that offers controls for
both users and service providers to design privacy policies. As different parts
of data are tagged with different privacy controls, the issue of how this data can
still be combined arises. We want to serve queries operating on this data to re-
spect these privacy controls and ensure that privacy resources are optimized for
the longevity of data use. In other words, we want to serve as many queries as pos-
sible (perhaps with some prioritization among those queries, e.g., if some queries
are more important than others) while still respecting all privacy constraints.

This task boils down to a matching problem: matching queries and data subjects in
a way that respects all constraints and optimizes a target function. Towards solving
this problem, we present a unified model that integrates all privacy constraints and
objectives regarding data usage. Using this model, we present a greedy, heuristic
approach that quickly produces good assignments with low memory usage. How-
ever, for more complicated settings, this approach may suffer from suboptimal
management of privacy resources. We then introduce an integer linear program
(ILP) approach to address this issue, which allows finding near-optimal solutions
(with a modifiable bound on suboptimality, e.g., 1% or 0.1%) for scenarios where
latency and memory requirements are of less concern. Produced assignments (by
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either approach) can then be executed to obtain a policy-compliant view of the
data.

For a nontrivial example setup, we show that both the heuristic and the ILP ap-
proach scale linearly in both runtime and memory usage regarding the number of
users, even though ILP programs are widely known to scale exponentially in the
worst case. Still, the ILP approach is more costly in terms of memory and run-
time. However, we show that the ILP approach can significantly outperform the
heuristic approach by better leveraging limited privacy resources to more closely
conform to the providers’ preferences. Finally, we show that in particular situ-
ations, the heuristic algorithm also produces near-optimal results. However, the
more complex the set of privacy policies and queries becomes, the more signifi-
cant the comparative advantage of the ILP approach.
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1 Introduction
In recent years, the collection and processing of sensitive data have reached new
heights. Applications across the spectrum rely on users’ data to power their es-
sential services. For example, consider Google Maps: Accurate and timely traffic
tools are critical to the navigation app and are only possible thanks to users shar-
ing data [15]. More generally, data-driven services are increasingly deployed in
practice [32].

However, with rapidly growing amounts of collected data, misuse of data is on
the rise [9]. Since much of the involved data is inherently sensitive (e.g., credit
scores), public awareness of data privacy has dramatically shifted.

These developments have led to privacy and security gaining tremendous impor-
tance across almost all organizations. Any organization not handling such issues
with care may face substantial reputational risks. On top of that, regulatory de-
mands and oversight have increased, translating to legal risk for organizations with
inadequate data security and privacy practices. On the other hand, good privacy
practices are now actively being used as advertisement, for example, by Apple
[26].

Thus, it comes as no surprise that recently, a flurry of privacy systems and solu-
tions emerged. However, many of these solutions are custom-made for specific
applications or use cases. However, also some designs for end-to-end privacy sys-
tems emerged that aim at targeting broad application scenarios (e.g., Privitar [27],
or Zeph [4]).

Ensuring data privacy has profound consequences on every aspect of data collec-
tion and processing. First, we need to protect data from unauthorized users. This
task can be handled by encryption and access control. Second, a sound privacy
design requires ensuring data minimization and purpose limitation by design, even
for authorized users. Privacy solutions handle these objectives. However, appro-
priate mechanisms and designs may vary widely depending on applications and
data type, which is where the complexity of generic privacy solutions arises.

In particular, the type and form of data collected, how this data is managed, and
which systems are used in this process are central pieces determining which kinds
of privacy and security guarantees any application or process can offer. For exam-
ple, if some data is not collected in the first place, an application trivially cannot
leak that data. In principle, any insecure piece that plays some part in data man-
agement and processing could void any privacy and security guarantees. These
problems can be partly overcome using cryptographic methods, but not without a
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cost. We, therefore, argue that end-to-end privacy tools are invaluable to achieve
better privacy practices on an application level.

As a first step towards better data privacy solutions, we need to organize and man-
age data on a conceptual level to ensure users’ privacy preferences are respected.
On a lower level, this means managing privacy resources (such as which data may
be reused or how much privacy budget may be used). Of course, we need to re-
spect constraints that we are trusted to uphold by the user while also ensuring
maximum possible utility for any analysts or similar trying to generate value from
data. Not sharing any data certainly gives maximum possible privacy protection
for the user but simultaneously inhibits all beneficial data usage for an organiza-
tion or society.

1.1 Challenges and Approach
This thesis first sheds some light on the implications and challenges of data man-
agement systems when considering privacy as a critical constraint.

The first challenge consists of defining an expressive, coherent, and practical
schema to define privacy policies and a set of queries that should be executed
on the data. The schema for privacy policies should allow for a balanced control
between users and providers while still incorporating a wide range of privacy poli-
cies different users may have. Similarly, the application provider (or analysts) may
want to express a wide range of queries, which the framework needs to support.

The second significant challenge is reconciling queries with a possibly heteroge-
neous set of privacy policies, i.e., designing the privacy planner. Of course, this is
connected to the first challenge since more expressive schemas for privacy policies
and queries might make this reconciliation harder. For example, we need to pro-
vide a way for the provider to express their preferences regarding which queries
should be prioritized. The privacy planner should then match users’ data streams
and queries, such that the solution complies with all privacy policies while con-
forming to the providers’ preferences as much as possible. On top of this, we need
to consider how different designs would scale in an actual implementation.

Finally, implementing a transformation planner constitutes the third challenge.
We need to carefully consider the tradeoff between the performance of the trans-
formation planner in terms of hardware utilization and the optimality of found
solutions. System optimizations and some modifications of the underlying ap-
proach can go a long way towards finding more favorable tradeoffs in this regard.
Of particular concern is the system’s scalability, as modern applications may have
millions of users.
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We propose an end-to-end privacy solution that is general enough to suit a wide
range of applications and user demands regarding data privacy. To this end, we
allow users to define their privacy policy according to their preferences from a
range of options chosen by the application provider. Furthermore, the provider or
analysts may express a wide range of desired queries and preferences regarding
which queries should be prioritized.

Towards reconciling these diverging interests, we present two fundamentally dif-
ferent approaches towards matching queries with user data (i.e., the privacy plan-
ner). The privacy planner respects all user-defined privacy policies while taking
the provider’s preferences into accounts as much as possible. The approaches fea-
ture different tradeoffs concerning optimality (regarding the specified priority of
queries) and system performance (in terms of hardware usage). These approaches
are not limited to our framework and can be adapted by other privacy frameworks
that adopt a user-centric approach and generalize to various applications.

1.2 Contributions
This thesis presents the following contributions:

• We recognize common privacy transformations and privacy models and in-
tegrate them into a unified abstraction. We expose an API to the user, al-
lowing simple controls (within limits specified by the provider) to specify
constraints regarding allowed transformations on their data, which are au-
tomatically mapped to constraints in the abstract model. Another API is
available to the provider, which allows specifying a wide range of queries
and priorities on these queries. These are then automatically mapped into
our abstract model as target objectives.

• We propose two solutions to reconcile constraints set by users’ privacy
policies and the demands expressed in queries. For time- and memory-
constrained settings, we propose a greedy, heuristic algorithm. This ap-
proach, however, comes with the tradeoff of not guaranteeing any bound
regarding the optimality of the solution. Where latency and memory re-
quirements are of less concern, we propose an approach using ILP solvers
to find optimal solutions up to a specific, modifiable bound (e.g., 1%).

• Finally, we implement these two approaches in a prototype. We then eval-
uate this prototype with a focus on scalability and tradeoffs between the
approaches under various settings.
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1.3 Thesis Outline
We start this thesis with an overview of some necessary background material in
Section 2. The covered material includes an overview of some definitions for data
privacy, current privacy regulations, and privacy-enhancing technologies. With
this background knowledge, we then discuss related work in the area of privacy
that is relevant to this thesis in Section 3.

The core of the thesis is formed by our proposed solutions to the challenges men-
tioned above. In Section 4, we give an overview of our design. We then go into
details regarding the framework for privacy policies and queries, as well as the
transformation planner. Finally, in Section 5, we present an overview of our pro-
totype, and evaluate it in Section 6, before drawing a conclusion in Section 7.
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2 Background
In this section, we cover background material relevant to the thesis. We start with
a brief introduction to data privacy. Then we discuss key technological concepts
of central importance to understanding the content of this thesis and related work.

2.1 Data Privacy
The right to privacy as a legal concept was first introduced [14] in a law review
article from 1890 where the right to privacy was described as the right to be let
alone [37]. In other words, privacy was regarded as being left alone, to remain
unobserved. While this definition has not lost its validity, to remain unobserved is
today probably best described by the word ”secrecy”.

Privacy as a concept was established before the digital world as we know it to-
day came to be. However, with the emergence and development of the Internet,
the notion of digital privacy has evolved and is gaining tremendous importance.
The Internet and most other digital inventions have emerged without much con-
sideration to the right to privacy (at least regarding the above definition). This
is largely due to the excitement around big data and its potential benefits, which
often overshadowed its potential pitfalls and implications on society, particularly
concerning individuals’ right to privacy. The concept of privacy seems to work in
the opposite direction. Keeping data secret implies that many applications cannot
reach their full potential.

Therefore, secrecy (and with it privacy) seems to be fundamentally incompatible
with the modern digital world that is largely data driven. However, just looking
at whether or not data was kept secret seems hardly enough to determine the im-
pact on individuals. For example, when data is processed in aggregate forms, the
impact on an individual is likely lower than if each individual’s data is examined
individually.

With this, alternative definitions of privacy emerged to strike a balance between
preserving individuals’ privacy and continuing to benefit from users’ data. In other
words, the focus is on the impact of sharing data with all the different actors and
subjects. For example, Prof. Nissenbaum defines privacy as the ”appropriate flow
of information” [25] in the context of her contextual integrity theory.

The above and similar definitions directly imply that solutions limiting what can
be inferred from data (purpose limitations) and only collecting strictly necessary
data (data minimization) are of central importance to preserve privacy. We argue
that just keeping all data secret is not the answer to the issue of privacy, as all data
subjects are also users, which can benefit from certain kinds of data processing.
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In this spirit, many solutions have emerged that allow a much more fine-grained
control over data, based on these two core pillars of data minimization and purpose
limitation.

2.1.1 Privacy Regulation

With the advances in data collection and processing, privacy concerns are con-
tinuously gaining importance. Lawmakers in many jurisdictions have acted upon
this and adopted comprehensive privacy regulations, like the EU with the General
Data Protection Regulation (GDPR) or Switzerland with the Federal Act on Data
Protection (FADP). This linkage of rising privacy concerns with new inventions
was already present in 1890 in the US, where the influential article ”The Right to
Privacy” [37] was published in the Harvard law review. The authors explicitly jus-
tified the need for privacy with (among other reasons) ”Instantaneous photographs
and newspaper enterprise (...) and numerous mechanical devices” that threatened
to expose everyone’s hidden secrets to the world.

Even though the regulations may look very different in different jurisdictions,
some significant trends can be identified. Most importantly, many regulations re-
quire services to inform a user how their data can and will be used (e.g., FADP [10]
article 4 or GDPR [13] article 5). For this reason, commercial service providers
usually have a privacy notice or privacy policy in some form, which the user is
made aware of when signing up for a service. While consent is not always re-
quired (see, e.g., FADP articles 12, 13 or GDPR [13] article 6), it is often still a
prerequisite to sign up for services as a legal safeguard for the provider.

Implementation. To implement these privacy regulations, developers usually
need to work together with legal experts who then draw up an appropriate pri-
vacy policy. In essence, developers need to provide a list of use cases to the legal
experts to then integrate this into a services privacy notice/privacy policy. For
many types of services, more or less standardized privacy notices/policies exist.
Still, for novel ways of data usage, developers may need to consult with legal
experts.

Enforcement. Enforcing privacy policies in today’s systems is currently mainly
a manual task. However, there are efforts to automate this process (e.g., Ancile,
Multiverse Databases, and Qapla [3, 21, 23]). Without automatic enforcement,
users have to trust the developers and legal experts of a service that a privacy
policy accurately describes how the data is used. Without proper enforcement, this
can leave data vulnerable to privacy violations. Work on automatic verification
and validation is essential to try to overcome this issue.
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While the predominant ”inform and consent” approach adopted in many privacy
regulations is a big step towards more transparency in data usage, it does not give
users much control over their data. Even when a service has many privacy options,
these are usually just binary switches where data usages for specific purposes (e.g.,
personalized advertisements) can be authorized. How the data is used for these
purposes is often not immediately apparent.

Therefore, the next step is to enable more comprehensive privacy options that can
more accurately model a user’s privacy preferences regarding different applica-
tions. Such an approach can lead to more data being voluntarily shared with the
provider since users do not need to deny all data sharing if they only want to re-
strict some kinds of usages. For example, users might be comfortable sharing their
data if it is only used in aggregation with a large enough group of other users. In
summary, such an approach can allow for the safe use of data while still respecting
users’ privacy preferences.

2.2 Privacy-Enhancing Technologies
In this section, various concepts that can be used to enhance privacy or model
and measure privacy are introduced, if they are either relevant for this thesis or
indispensable for related work.

2.2.1 Privacy Models

Privacy models try to formalize the notion of privacy. Through that, they often as-
sign concrete numerical values for the amount of privacy upheld or lost by certain
kinds of data usage.

Differential Privacy

Differentially privacy tries to capture the privacy impact of executing randomized
algorithms that take as input a collection of data corresponding to different per-
sons. The idea is to add random noise to the output of such an algorithm. The
contribution of a single person to the algorithm’s output is then probabilistically
similar to the algorithm’s output if this person’s data was not present in the al-
gorithm dataset. The variable ε captures the ”probabilistic similarity”. For small
values of ε, little information about this person is revealed, therefore protecting the
data subject’s privacy. Formally, differential privacy is defined as follows ([38],
Definition 2.1):
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Definition 2.1 (Differential Privacy). A randomized Algorithm M provides ε-
differential privacy if for any two adjacent datasets A and B and any set of possi-
ble outputs S of M :

Pr[M(A) ∈ S]
Pr[M(B) ∈ S]

≤ eε

In the above introduction to differential privacy, neighboring datasets were defined
as datasets with and without the data corresponding to a single individual.

Expanding the above definition off differential privacy, approximate differential
privacy (also known as (ε, δ)-differential privacy) additionally states that this ”pro-
tection guarantees” may fail with a probability of δ, i.e. with a probability of δ
anything may happen. The following definition formalizes this notion ([6], defi-
nition 2.4):

Definition 2.2 (Approximate Differential Privacy). A randomized algorithm M
with domain N|X| is (ε, δ)-differentially private if for all S ⊆ Range(M) and for
all x, y ∈ N|X| such that ||x− y||1 ≤ 1:

Pr[M(x) ∈ S] ≤ eε · Pr[M(y) ∈ S] + δ

Note that if δ is set to 0, this definition collapses to Definition 2.1, i.e., differential
privacy is just a particular case of approximate differential privacy. As such, we
will always refer to this definition in the following, rather than Definition 2.1

While this definition gives weaker guarantees than standard differential privacy,
it allows for more algorithms and different compositions. In particular, as will be
explained in the following, different types of noise may be used to achieve differ-
ential privacy. Some noise types cannot be used for standard differential privacy
since they always imply an δ > 0. In addition, some theorems to calculate the dif-
ferential privacy cost (in terms of ε and δ) of multiple applications of algorithms
to the same data set are only valid for differential privacy.

Next, a method to achieve differential privacy for some ε > 0 is discussed. The
basic idea is simple: By adding randomized noise to the output of an algorithm,
Definition 2.2 can be achieved for some ε. Different values of ε can be obtained
depending on the kind and magnitude of added noise.

Additive Noise Mechanism

To achieve differential privacy for some function f on a dataset A, some noise
needs to be added to f(A). Obviously, the amount of noise must depend on
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the function, with functions that are more ”sensitive” to small input changes (i.e.
where a small input change can lead to a very different result) requiring more noise
than other functions. The following definition formalizes this ([6], Definition 3.1):

Definition 2.3 (l1-sensitivity). The l1-sensitivity of a function f : N|X| → Rk is:

4f = max
x,y∈N|X|,||x−y||1=1

||f(x)− f(y)||1

To achieve differential privacy, the Laplace Distribution can be leveraged ([6],
Definition 3.2):

Definition 2.4 (Laplace Distribution). The Laplace Distribution (centered at 0)
with scale b is the distribution with probability density function:

Lap(x|b) = 1

2b
exp

(
−|x|
b

)
The variance of this distribution is σ2 = 2b2. We will sometimes write Lap(b) to
denote the Laplace distribution with scale b, and we will sometimes abuse notation
and write Lap(b) simply to denote a random variable X ∼ Lap(b).

As hinted on earlier, to achieve differential privacy for some function f , we need
to add some noise to f ’s output. We model this noise as random variables that
follow a Laplace distribution ([6], Definition 3.3) to obtain differential privacy:

Definition 2.5 (Laplace Mechanism). Given any function f : N|X| → Rk, the
Laplace mechanism is defined as:

ML(x, f(.), ε) = f(x) + (Y1, ..., yk)

where Yi are i.i.d. random variables drawn from Lap(4f/ε).

Using the Laplace Mechanism as described above guarantees ε differential privacy
([6], Theorem 3.6):

Theorem 2.6 (Laplace Mechanism Correctness). The Laplace mechanism pre-
serves (ε, 0)-differential privacy.

This theorem assures that if by adding proper amounts of noise, any goal in terms
of ε can be achieved, i.e., any privacy goal can be achieved by paying the price
in terms of noise. The amount of noise increases with smaller values for ε and
decreases with smaller values for 4f . From this follows that for many aggre-
gation functions (e.g., summing, counting, and averaging), the amount of noise
relative to the output size decreases if the aggregation takes more entries into ac-
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count (assuming a fixed ε), i.e., aggregations over larger datasets may provide
more accurate results with the same level of privacy (in terms of ε)

Composition Theorem

To determine what happens if multiple differentially private algorithms on the
same dataset are used is the next logical step. Intuitively, it makes sense that
privacy guarantees erode since, with each differentially private result, more and
more insight into the dataset can be gained. The most general result is known as
sequential composition ([6], Theorem 3.16)

Theorem 2.7 (Sequential Composition). Let Mi : N|X| → Ri be an an (εi, δi)
differentially private algorithm for i ∈ [k]. Then ifM[k](x) = (M1(x), ...,Mk(x)),
then M[k] is (

∑k
i=1 εi,

∑k
i=1 δi) differentially private.

Note that no assumptions other than that each Mi is (approximate) differentially
private have been made. This theorem holds in basically any situation involving
differential privacy, but more specialized theorems (e.g. [31]) may give better
bounds in certain situations. For this thesis, sequential composition and parallel
composition ([22], Theorem 4) will be enough:

Theorem 2.8 (Parallel Composition). Let Mi each provide ε-differential privacy.
Let Di be arbitrary disjoint subsets of the input domain D. The sequence of
Mi(X

⋂
Di) provides ε-differential privacy.

The problem with the above definitions and theorems is that they are defined with
traditional databases in mind. However, this thesis focuses on unbounded time-
series data, which often have markedly different data schemas (see, e.g., Apache
Kafka [1]). Towards defining differential privacy for time-series data, first, a gen-
eral definition of adjacency is needed ([38], Definition 2.4):

Definition 2.9 (X-Adjacent Data Streams). Data streams (or stream prefixes) S
and S ′ areX-adjacent if they differ only in the presence or absence of any number
of occurrences of a single element x ∈ X . In other words, if all occurrences of x
are deleted from both streams, then the resulting streams should be identical.

This then gives rise to the following notions of differential privacy [38]:
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Definition 2.10 (Event-Level Differential Privacy). Here, considered streams are
considered as adjacent if they differ in a single event. In other words, X is defined
as the set of possible events in Definition 2.9 for two streams consisting of many
events. The streams (or stream prefixes) are then considered adjacent if there is
a single event, whose deletion from both streams (or stream prefixes) would make
the streams identical.

Definition 2.11 (User-Level Differential Privacy). On the other hand, in user-
level differential privacy, streams are considered adjacent if they differ in the
presence or absence of a single user. In other words, X is defined as the set
of sets of events which each belong to a single user in Definition 2.9. In other
words, streams are user-level adjacent if and only if by deleting from both streams
(or stream prefixes) all events belonging to a single user, these two streams (or
stream prefixes) would become equal.

Many different notions of differential privacy on time-series data exist on top of
the above ones. For example, w-event-level differential privacy [18], which is a
compromise between user-level and event-level differential privacy. However, the
above two definitions are sufficient for this thesis.

k-Anonymity

k-Anonymity tries to define the level of privacy of a dataset, regardless of the algo-
rithms executed on this dataset. This idea markedly contrasts with (approximate)
differential privacy, which measures the privacy impact of certain algorithms in
terms of ε and δ. The idea is that in a k-anonymous database, for any entry in this
database, at least k − 1 entries are present in the database, which have the same
value for any attribute that may serve as an identifier [33]:

Definition 2.12 (k-Anonymity). Each release of data must be such that every
combination of values of quasi-identifiers can be indistinctly matched to at least
k individuals.

As an example, consider a database that contains data from customers of some
business. If this database is k-anonymous, even if, e.g., the customer’s address,
age, and name are known, there should always be at least k entries that match these
attributes. In this example, k = 1 seems to be the only plausible value due to the
combination of name, address, and age likely being unique. Towards achieving
higher values of k, a possibility would be only to save the first letter of a person’s
first name, assign each person to one of five age groups and assign each person to
a more extensive area instead of an accurate address. After such modifications, it
seems plausible that a big part of the dataset conforms to k-anonymity for greater
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values than k = 1. Simply removing non-conforming entries would extend this
property to the whole remaining dataset.

In this thesis, we will not consider k-Anonymity further and instead focus on
differential privacy. As can be seen from the above definition and example, k-
Anonymity is again defined for traditional databases. Therefore, this definition is
not directly applicable to infinite time-series, which is the focus of this thesis.

In addition, applying k-Anonymity to achieve privacy is not that straightforward
in all cases (see, e.g., [35]) and does not give guarantees comparable to differen-
tial privacy. Indeed, according to Narayanan and Shmatikov, for some kinds of
databases, k-anonymity does not provide any meaningful privacy guarantees [24].
To the best of our knowledge, such limitations do not apply to differential privacy,
which gives robust guarantees without any additional assumptions.

2.2.2 Privacy Transformations

Privacy transformations relate to the concept of modifying data such that less in-
formation is contained to protect the privacy of data subjects. In this section, com-
mon privacy transformations used in practice are covered, and the provided pri-
vacy protection guarantees are discussed. Most transformations considered here
are also used in privacy platforms such as Zeph [4] or Privitar [27].

Table 1 provides an overview over the considered privacy transformations.

PRIVACY

TRANSFORMATION
SHORT DESCRIPTION

D
A

TA

M
A

S
K

IN
G

Tokenization Replace sensitive data with a unique token
Pseudonymization Remove any (pseudo-)identifiers from data
Perturbation Adding noise to data values or outputs of al-

gorithms
Redaction Remove data or certain aspects of it
Shifting Modify each data subject’s entries using a

(per subject) fixed formula

D
A

TA
G

E
-

N
E

R
A

L
IZ

A
T

IO
N Bucketing First define several buckets and then only

store or report in which bucket a value be-
longs

Time Resolution Aggregating data of a data subject during a
certain time span

Population Resolution Aggregating data of different data subjects

Table 1: An overview of the different privacy transformations
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Each of these privacy transformations has its uses, and none of them are appro-
priate in all situations. To transform data before processing to limit exposure of
sensitive data while also still enabling value generation from transformed data
may require different privacy transformations with different parameters depend-
ing on, e.g., application and data type. As an example, consider the step counting
function many modern smartphones support. Health insurance companies may of-
fer discounts if a certain number of steps are reached each day and therefore need
access to daily aggregates. On the other hand, statistical analyses of the average
number of steps of a country’s population only need access to data aggregated
over extensive groups of people.

Data Masking Data masking obfuscates sensitive parts of the data while still
retaining some usefulness [4]. In the following, privacy transformations that fall
under this category from Table 1 are introduced in more detail.

Definition 2.13 (Tokenization). Tokenization refers to the process of ”replacing
sensitive data with a unique token” [27]. This token should retain usefulness for
some intended purposes while not revealing more information than needed.

Depending on what the goal is, this process may be reversible or (practically) ir-
reversible. In the first case, tokenization is a form of encryption. It is important to
note here that reversible tokenization does not mean reversible by anyone access-
ing the data. Instead, it usually requires some secret key or access to a database
that contains a mapping from tokens to original values. For example, many com-
mercial systems will assign users an id, which can only be mapped to a natural
person by a subset of employees with access to a database table that maps this
id to, e.g., a name or an address. Nonreversible tokenization is widely used as
well, especially in the form of hashes. For example, in payment systems, hashes
can be used to verify that the sender owns a secret key without actually revealing
the secret key in any message since these messages may be transmitted through
insecure channels.

Tokenization can also be deterministic or nondeterministic. In the deterministic
case, the same input will always produce the same output. Determinism is, for
example, an essential requirement in traditional databases where data is combined
across different tables by joining key attributes. On the other hand, nondetermin-
istic means that the same input may (pseudo-)randomly result in different outputs.
This process makes linking as before impossible but can help preserve privacy for
precisely this reason. Ergo, any sensible form of encryption is also nondetermin-
istic (if one does not have access to the secret key).
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Definition 2.14 (Pseudonymization). Pseudonymization refers to the idea of re-
moving any attributes from data that could lead to an identification of data sub-
jects.

Essential attributes are fundamentally the same as for tokenization (deterministic
vs. nondeterministic, reversible vs. nonreversible). However, these choices have
additional consequences in this context. Consider a situation where any data that
may lead to identification is tokenized irreversibly. By definition, it is no longer
possible to identify the person, which means the data is pseudonymized. On the
other hand, if the tokenization is reversible, the data can only be described as
pseudonymized as long as this reversal has not occurred or cannot occur. Suitable
methods include storing personal data separately and only accessible for autho-
rized persons.

The impact of deterministic vs. nondeterministic is again mostly in how data can
be linked. This choice may impact what information needs to be tokenized. For
example, neither age nor a ZIP code will typically be enough to identify a person
(assuming several people correspond to any given ZIP code or age). However,
if these attributes can be linked, it may be possible to identify a person (see also
Definition 2.12: k-Anonymity in this context).

Definition 2.15 (Perturbation). Perturbation relates to the notion of adding noise
to original data values or outputs of algorithms, e.g., to achieve differential pri-
vacy (Definition 2.2).

As explored further and more formally in Definition 2.2, the addition of more
noise usually corresponds to better protection of privacy of data subjects but at
the cost of reducing the query accuracy and utility of data. However, what kinds
of guarantees are given (if any) by added noise depends on the type of noise. As
stated in Theorem 2.6, noise generated from a Laplace Distribution can be used
to achieve (ε, 0) differential privacy for any ε > 0, while gaussian noise provides
approximate differential privacy.

However, perturbation does not need to be with differential privacy in mind. Noise
can also be added, e.g., from some bounded uniform distribution to data values or
algorithmic results without a specific privacy model in mind. In this case, there
are no formal guarantees, unlike when using differential privacy. However, such a
transformation may still be of some use for privacy protection or other purposes,
like preventing overfitting a machine learning model to its training data.

Definition 2.16 (Redaction). Redaction refers to omitting some data or aspects of
it.

For this thesis three types of redaction are essential:
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The first type refers to simply omitting specific fields/attributes in a dataset. For
example, consider a customer of some health service who regularly measures their
blood pressure and heart rate. For statistical analyses, the customer may grant this
service access to the heart rate but omit the blood pressure. On the other hand, a
doctor may access the data without restriction to decide on optimal treatment.

The second type of redaction refers to only omitting values if they fall into a par-
ticular range. For example, heart rates in a ”normal” range could be omitted, while
values that fall outside this range are still transmitted. Alternatively, data may not
be transmitted unless the heart rate goes into a critical region way above ”normal”
ranges, in which case emergency responders can automatically be notified.

Finally, the third type of redaction which is of interest in the context of this thesis,
is to redact specific statistics of a dataset (e.g., the variance of a value) while giving
access to others (e.g., mean). Of course, this is only meaningful if no access is
granted to the underlying data directly.

Especially the first type of redaction gives the best privacy guarantees possible
for the data subject regarding the omitted data. However, on the flip side, no
value can be generated from omitted data. As discussed in Section 2.1, more
modern definitions of privacy often also consider the effects of not sharing data on
other actors than the data subject (e.g., an organization or society at large). Such
definitions explain why the other types of redaction are also of great importance
in a privacy-focused system.

Definition 2.17 (Shifting). In shifting, the idea is that each data subject chooses
a random offset and then only transmits data with this offset added.

In contrast to Definition 2.15: Perturbation, this preserves relationships such as
<,>, and =. for data of a single user, which may be necessary to preserve the
utility of specific data. Due to this reason, shifting is commonly applied to dates
and times due to it preserving the order of events for a single user. Even with
shifted dates, the amount of time between events/entries and their ordering is pre-
served, which is the primary concern in many applications and not the exact date
itself. However, this transformation still has the drawback of not allowing to link
this information to other date-dependent information, such as weather informa-
tion on a particular day or other user’s data. Of course, this technique could also
be applied to other data, e.g., weight or height, to track relative changes without
leaking actual values.

While the more excellent utility is advantageous in many cases, this transforma-
tion provides fewer guarantees than per-value random perturbation. If the actual
value of any single shifted data value is known, the offset chosen by a particular
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data subject can be calculated. From this, the actual value of all shifted data can
be derived.

In summary, this transformation does offer little privacy protection for data sub-
jects. However, more analyses are possible in general, compared to more disrup-
tive transformations such as perturbation in combination with differential privacy.
As with any other transformation, shifting offers a specific tradeoff that may or
may not be appropriate for a given application, purpose, and setting.

Data Generalization Data generalization describes techniques reducing data fi-
delity [4]. In other words, the granularity and, therefore, the informational value
of data is in some way reduced, e.g., by only releasing aggregate data or shrinking
the size of the data domain. Below, the three most common types of data gen-
eralization are discussed. Since they are orthogonal to each other, they can be
combined freely.

Definition 2.18 (Bucketing). This transformation describes a technique in which,
instead of giving access to raw values, several buckets are defined, and it is only
reported in which bucket each value falls. In other words, the domain of values is
reduced to a smaller set of buckets.

An important example of this transformation is its application to location data.
For example, sharing one’s address has a distinctly different impact on privacy
than merely sharing one’s country of residence. A similar effect could also be
reached by using Perturbation (e.g., on coordinates), but a bucketing approach
can take into account specific circumstances like country borders or population
density, which is not possible with standard Perturbation. Bucketing location data
is a natural transformation for many use cases. A user may not want to share
its exact location with a service but may not mind reporting in which area they
currently are. This transformation enables the service to gain essential data for
decision-making while respecting the user’s privacy concerns. By appropriately
designing the buckets, favorable tradeoffs between privacy and extracting valuable
information from data can be made.

Definition 2.19 (Time Resolution). This refers to lowering the temporal resolu-
tion of the data by aggregating data together that lies within a specific time frame.

Consider the example of an intelligent car transmitting to the car manufacturer
how far it has moved since the last update. If updates happen every minute, the
car manufacturer would see exactly when and when not the car is used, with which
many customers might not be comfortable. On the other hand, sharing the total
distance only at the end of each month still enables elemental analyses for the
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manufacturer, like how far people usually drive during the first year, while re-
specting users’ privacy concerns.

Definition 2.20 (Population Resolution). This refers to only releasing data that is
the result of an aggregation over a certain amount of people.

Intuitively, the idea is to ”hide” individuals’ data in a group, such that private data
is not exposed. As an example, consider feedback ratings for some services. Such
feedback is usually made available only in aggregate form, e.g., it might only
show average and variance for each asked metric, but not more. This information
is enough to determine whether or not many or a substantial part of customers are
satisfied or not while not exposing any individual’s responses.

Aggregate Functions

For both aggregation over time and population (Definition 2.19 and Definition 2.20),
what kinds of aggregation can take place has not been discussed yet. For exam-
ple, a simple statistical query (e.g., maximum, mean, or variance of a value) might
need to be executed. Alternatively, the data may be supposed to be used in more
advanced ways (e.g., to train trend detection models).

In general, these aggregate functions can be applied both with aggregation over
time and aggregation over population. However, greater care should be taken if
such functions are used by a randomized algorithm that tries to reach certain dif-
ferential privacy goals (i.e., in terms of ε and δ). For the Laplace mechanism
(Definition 2.5), the l1-sensitivity (Definition 2.3) of the aggregate function deter-
mines how much noise needs to be added to reach certain values of ε. Different
mechanisms to reach differential privacy do exist but still depend on which func-
tion should be made differentially private.
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3 Related Work
This thesis presents a system design that manages and handles heterogeneous pri-
vacy policies integrating state-of-the-art privacy transformations by optimally us-
ing non-replenishable privacy resources to fulfill a set of queries defined by the
service provider. In this section, we discuss work that is of relevance to this line
of work.

3.1 Privacy Policy Enforcement
One key aspect of this thesis is defining and automatically enforcing a user-centric
privacy model. This section explores prior work that focuses on policy enforce-
ment, though without the same user-centric approach, i.e., with the focus on
organization-wide privacy policies and enforcing role-based access controls. To
this end, we introduce four systems that are relevant in this regard:

• Towards Muliverse Databases [21]: The focus of this work is providing
an extension to SQL database systems that allows setting policies such that
each user only sees a policy-compliant view (”universe”) of the database
[21]. Similar to our thesis, this separates policy management from other
application logic by automatically enforcing these policies and creating
policy-compliant views. However, the authors consider traditional databases
and role-based access controls and do not follow a user-centric approach.
We instead focus on streaming data, more commonly associated with plat-
forms such as Apache Kafka [1] instead of systems using relational models,
and focus on state-of-the-art privacy transformations which apply to any
access regardless of role.

• Privacy Integrated Queries (PINQ) [22]: In PINQ, the author presents a
platform to analyze data from traditional databases by providing a wrapper
that checks and enforces certain privacy guarantees. Similar to this work,
the focus is on differential privacy due to its robust guarantees. Privacy
Integrated Data Stream Queries [38] extends PINQ by providing automatic
enforcement of differential privacy (both on a user- and event-level) on data
streams, as is the case in this thesis. However, we go a step further and
allow users to have heterogeneous privacy policies that allow setting privacy
transformations without differential privacy. We then focus on providing
optimal usage of non-replenishable privacy resources given a set of queries
and these heterogeneous privacy policies.

• Privitar [27]: Privitar is a platform that allows setting policies that are valid
across an organization. Privitar then automatically enforces these policies
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by creating distinct ”protected data domains” for different purposes, i.e.,
policy-compliant views. Such policies consist of a set of rules, where each
rule is a combination of techniques, similar to what we refer to as ”transfor-
mation chains” in Section 4.2.2. Unlike our thesis, however, Privitar focuses
on compliance and enforcing company-wide privacy policies. We instead
have chosen a user-centric approach and handling a diverse set of privacy
policies that result from our user-centric approach.

• Zelkova [17]: Zelkova is a system that analyzes policies for Amazon’s
AWS. It can automatically derive specific implications of policies in place.
For example, Zelkova is used to derive if the applicable set of policies leads
to particular resources being publicly accessible. It decides such questions
by comparing the policies in place with a policy corresponding to a partic-
ular question (e.g., if a resource is publicly available) using an SMT solver.
Zelkova and related research are orthogonal to this thesis and can help un-
derstand what implications a particular privacy policy has, which may help
users and experts make informed decisions when setting their privacy pol-
icy.

3.1.1 User-centric

More closely related to our thesis, some prior work also considers a user-centric
approach to privacy, in which different policies can be associated with different
users. We consider here the three most important approaches in connection with
this thesis:

• Zeph [4]: Zeph offers a platform where users can restrict access to their data
and enforce these restrictions cryptographically. Data producers will only
transmit encrypted results, while a privacy controller must authorize any de-
cryption. This privacy controller will only provide the necessary decryption
information if queries conform to users’ privacy policies. A component
called the ”policy manager” is responsible on the provider side to match
users and queries to make sure no privacy policy is violated, which corre-
sponds to our privacy planner. While the authors consider a greedy, online
approach for allocating non-replenishable privacy resources, we consider
an offline, batch-oriented approach for our privacy planner, making optimal
use of these limited resources. This thesis is complementary to Zeph and
could be used to improve upon the system presented there.

• Ancile [3]: Ancile allows users to specify use-based privacy controls, which
focus on limiting how data can be used. The authors present a modified ver-
sion of Avenance, a language designed for use-based privacy, to specify
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such restrictions as regular expressions. Instead of why the data is being
accessed, we instead focus on giving users control over what kind of infer-
ences can be made from their data. While we do not support data-dependent
policies, we support a much richer set of privacy transformations and specif-
ically consider constraints that arise from them (most notably regarding the
reusability of data, which is expressed in a privacy budget). To appropriately
support restrictions arising from this budget, we present our privacy plan-
ner. In Ancile, such a component is not present since different constraints
are taken into account.

• Riverbed [36]: In Riverbed, each user can specify a privacy policy for each
web service they use. Similar to this thesis, the authors imagine a system
where experts define appropriate privacy policies. This policy specifies,
most importantly, which web services are allowed to handle the users’ data,
what these services’ software stacks are allowed to look like, and some
restrictions on how data can be handled (e.g., whether data may be aggre-
gated). Therefore, these restrictions are very different from our policies: We
provide a rich set of privacy transformations. Users can limit what kind of
inferences can be made but are agnostic regarding the software stack used
to obtain such a privacy-compliant view.

3.2 Privacy Accounting
A key difference to other related work so far was that we consider a rich set
of state-of-the-art privacy transformations, which together introduce a substantial
number of constraints. Most importantly, we consider privacy budgets, limiting
the amount and type of transformations that can be run on data. Compared to
binary role-based access restrictions, such policies can provide better tradeoffs re-
garding data utility and protect users’ privacy. In the following, we will present
two critical systems that prominently focus on keeping track of and optimizing
the allocation of privacy budgets.

• Sage [19]: Sage is a system for training machine learning models on a
continually growing set of data. They address the tradeoffs between model
accuracy and differential privacy budget consumption. To this end, they
subdivide the stream of incoming data into blocks, each with a certain dif-
ferential privacy budget. Through this, they can enforce event-level differ-
ential privacy: If a blocks differential privacy budget is used up, this block is
retired. While we also support event-level differential privacy in this thesis,
we also support a rich set of privacy transformations, including transfor-
mations without differential privacy and user-level differential privacy. In
addition, we focus on dealing with a large set of potentially different privacy

25



policies. At the same time, sage only considers a single privacy policy (a
budget in terms of ε and δ for differential privacy).

• Scheduling Privacy Budget: This work presents a scheduler (DPF) to en-
force a global differential privacy guarantee, given multiple batch work-
loads which consume specific amounts of differential privacy (in terms of
ε and δ) [20]. To this end, data streams are subdivided into blocks whose
form depends on whether user-level, event-level, or a compromise between
the two differential privacy notions should be supported. These options go
further than Sage [19], which only supports event-level differential privacy.
They show that the DPF algorithm outperforms traditional scheduling algo-
rithms for privacy resources since standard approaches assume that all re-
sources are replenishable (e.g., CPU cycles). The authors then describe their
implementation in Kubernetes. While they consider an online setting and
consider a greedy approach, we instead consider an offline, batch-oriented
approach to distribute privacy resources. Through this, we can come up
with optimal solutions given providers’ preferences. In addition, we allow
a heterogeneous set of privacy policies that also allows other restrictions
than differential privacy. Finally, they optimize for fairness between differ-
ent workloads. On the other hand, we introduce the concept of profits such
that the provider can express preferences regarding which queries should be
prioritized.
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4 Design
This section we start with brief overview of the system, then we discuss the API
available for both users and the service providers to specify different privacy poli-
cies. Finally, we detail the design of the privacy planner. We start by presenting
the query API and which problems and constraints arise while fulfilling queries
under a heterogeneous set of privacy policies. Then, we present two approaches
for the privacy planner: The heuristic approach and the ILP approach.

4.1 System Overview
As more privacy solutions emerge and systems start to adapt more fine-grained
privacy controls, the new fundamental issue of privacy management arises. Pri-
vacy management is prevalent across almost all privacy-preserving systems that
go beyond a specialized, ad-hoc privacy-preserving data collection mechanism [5,
8]. The consequence of giving more privacy controls to the user, i.e., a user-centric
model for privacy, is that a service provider must handle data with heterogeneous
privacy policies. The heterogeneous set of privacy restrictions leads to a logical
partitioning of the data and the underlying privacy restrictions dictate when and
under what circumstances it is possible to combine data from different partitions.
Observe that the problem of data with multiple privacy policies goes beyond sys-
tems that follow a user-centric model for privacy. Services that operate across
regions where different legal privacy restrictions apply also end up partitioning
the data.

A naive solution can be realized by treating individual partitions as data silos and
running only compatible queries within a partition but never across. This however
severely harms the utility that could be extracted from data. Moreover, even with
this simple solution, it remains unclear how to determine that a query is compat-
ible with certain privacy restrictions. In this thesis, we want to go a step beyond
with a new system design. First, the system design provides the infrastructure to
determine whether a particular query is compatible with the privacy restrictions
of a partition. Second, the design also allows combining data from different par-
titions.

In addition to the challenge of data-partitioning, privacy management also needs
to address the challenge of managing privacy resources. Privacy is a finite, non-
replenishable resource and privacy restrictions impose limitations on using the
same raw data in multiple queries. As a result, different queries compete for the
same data, and privacy management needs to orchestrate this competition. For
example, data used in an aggregation query (e.g., sum over 1000 users) cannot be
used elsewhere to prevent differencing attacks (a type of reconstruction attack).
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Figure 4.1: An overview over the different components of a end-to-end privacy
solution, with the parts which are the focus of this thesis in black.

Alternatively, in differential privacy, a composition theorem controls the privacy
cost for running multiple queries.

In this thesis, we consider privacy management for a system that follows a user-
centric privacy model. Figure 4.1 gives an overview of the components. Users of
a service define a privacy policy that outlines what privacy restrictions apply to
their data. Apart from the privacy policy, a user also provides additional metadata
that provides further information about the data (e.g., the users’ age or country of
residence), and finally, a user submits streams of raw (sensitive) data.

We follow the approach from Zeph and Privitar [4, 27] and leverage privacy trans-
formations to bring incoming raw data into the form of a privacy-compliant view.
The privacy-compliant view respects all user-defined privacy restrictions, and the
view is available for arbitrary post-processing in existing data processing systems.

The privacy planner of the service provider is responsible for the privacy man-
agement. It collects privacy policies and metadata of all available data streams,
tracks the consumption of privacy resources from previous queries, and provides
an interface for expressing transformation queries. The service provider uses the
query API to specify transformations that allow extracting utility from the data
while respecting a user’s privacy policy. Based on the privacy policies, metadata,
remaining privacy resources, and the set of transformation queries, the privacy
planner constructs a transformation plan which specifies the privacy transforma-
tions to execute and on top of which parts of the pool of available data. In essence,
the transformation plan is an assignment or matching between the available data
and the transformation queries.

Finally, a data transformer receives the transformation plan and executes the pri-
vacy transformations to construct a privacy-compliant view of the data.
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This thesis focuses on privacy management, which involves expressing privacy
policies and transformation queries and the privacy planner to construct a transfor-
mation plan. The data transformer which uses the transformation plan to construct
privacy-compliant views is outside the scope of the thesis.

4.2 User-centric Privacy Design
Our design follows a user-centric model for privacy, i.e., allows users to express
their preferences on how their data should be handled. These privacy policies
are then one of the inputs for the privacy planner that ensures that queries are
matched with data according to users’ privacy policy. This section gives insight
into the parts of our system concerned with providing users control over how
privacy preferences are assigned and applied to their data.

Most existing services generally use a privacy policy in the form of a long legal
document. We could borrow this idea also for a system that follows a user-centric
model for privacy. In such a strawman, users express their privacy policy in the
form of an unstructured text document. Service providers would collect privacy
policies and analyze them to extract the privacy restrictions of the data. However,
this strawman has two issues that render the approach infeasible. First, writing
legal documents such as privacy policies requires a legal background and training.
Second, even if we assume that users can express written privacy policies, it would
be almost impossible for a service provider to determine how to use the data.
Indeed, this approach does not scale for services with a large number of users. As
a result, it is evident that in a user-centric model, we require structured privacy
policies in a machine-readable form while keeping the complexity for end-users
low.

In the model of this thesis, a privacy policy describes what type of privacy trans-
formations a service provider needs to perform before being authorized to use the
data. The general approach is structured similarly to Zeph [4]. However, in this
thesis, we make it more expressive with additional functionalities to consider the
challenges of the privacy planner better. In Figure 4.2, we provide an overview of
the system design that allows users to express their privacy preferences.

What type of privacy transformations are sensible depends on the underlying data.
As a result, it is natural to build privacy controls on top of existing data schemas.
Every application working with streaming data already requires a data schema.
The only proposed conceptual difference is adding some additional attributes to
the schema to enable privacy controls.

A challenge for data privacy is to identify transformations that respect users’ pri-
vacy preferences and, at the same time, provide utility for the service provider,
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Figure 4.2: A closer look at how users can be assigned privacy policies in practice.

i.e., such that the service provider can offer the desired functionality. We address
this challenge with the idea that the service provider defines a selection of privacy
options. A single privacy option is a sequence of privacy transformations (called
”chain”) with appropriate parameters. In essence, users create privacy policies by
selecting the acceptable options for their data, or in other words, a privacy policy
is a (many-to-many) mapping of privacy options to different parts of data.

While our system design enables users to explicitly set their privacy policy, do-
ing so for each application can quickly overwhelm users and may require expert
knowledge to understand all implications. Complex and time-consuming privacy
policies are not a new phenomena [39, 34] . In that regard, our model is no
different and arguably even worse because our privacy policies are more precise
and verbose. To solve this issue and make the system also accessible to non-
expert users, we envision that users only set their high-level privacy preferences,
which are valid across applications. Afterward, for each application, privacy ex-
perts (e.g., from the EFF [7]) design appropriate privacy policies that correspond
to the high-level privacy preferences. Selecting a reasonable choice of privacy
preferences is outside the scope of this thesis. However, controlling these prefer-
ences could be designed similar to how tracking preferences are set in the Firefox
browser, see Figure 4.3. Note that advanced users are still able to set their cus-
tomized privacy policies.

In Section 2.2, we presented existing privacy transformations that are used in prac-
tice and discussed different privacy models. Before we dive into augmenting data
schemas with privacy options and expressing privacy policies, we revisit the trans-
formations and privacy models and highlight what we support. We conclude the
user-centric privacy design with a case study that shows how the different parts
look in a concrete application.
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Figure 4.3: Different options in firefox regarding tracking preferences.

4.2.1 Supported Privacy Models and Transformations

As a prerequisite for expressing privacy policies, we first define what kinds of
privacy models we can support and which privacy transformations using which
parameters we take into account. In Section 2.2 we list a general description
of privacy models and transformations. This section specifically focuses on the
privacy models and transformations that are part of our system, together with the
parameters we make available to modify transformations’ properties.

Supported Privacy Models In Section 2.2, two privacy models were intro-
duced: k-Anonymity and (approximate) differential privacy (DP). In our system,
we only make (approximate) differential privacy available for two main reasons:
First, differential privacy is the gold standard of privacy protection, and for many
types of algorithms, modifications to include differential privacy already exist. In
principle, such algorithms can then be used in conjunction with our privacy plan-
ner. Second, differential privacy can easily be applied to time series data, which
is the focus of this thesis. Finally, substantial prior work exploring the privacy
guarantees extended by differential privacy on time series data, depending on how
the definition is applied, already exists.

Specifically, our systems supports (ε, δ) approximate differential privacy (Defi-
nition 2.2) in the form of event-level differential privacy (Definition 2.10) and
user-level differential privacy (Definition 2.11). We support both sequential com-
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position and parallel composition, which are automatically applied depending on
the data schema (what we call ”privacy groups” in later sections. To achieve dif-
ferential privacy, we support adding different types of noise, including Laplacian
noise (Definition 2.4).

However, we also support various privacy transformations without formal guar-
antees. For specific applications, such transformations are an invaluable tool, as
some kinds of analyses can respond very poorly to the kinds of noise added for
differential privacy. For example, consider a sequence of events, each with a
timestamp. If we add random noise to this timestamp, events might not be in the
same order anymore, leading to very misleading results. At the cost of poten-
tially less privacy protection, we could instead choose a random offset only per
user instead of per event (which corresponds to a privacy transformation called
”shifting”), which still enables such analyses

Supported Privacy Transformations. In Section 2.2, a variety of transforma-
tions that can be used to enhance users’ privacy were introduced. Here, we detail
each transformation available in our system and which parameters can modify its
behavior.

• Field Redaction: RedField

The most effective way to respect users’ privacy: Simply not transmitting
or deleting particular data streams. This transformation corresponds to the
first type of redaction as explained in Definition 2.16.

• Range Redaction: RangeRed

This transformation corresponds to the second type of redaction from Def-
inition 2.16. If this transformation is applied to a data stream, only values
outside of a certain range are transmitted. We therefore have the following
parameters:

– min: Defines the minimum of the redacted range (included).

– max: Defines the maximum of the redacted range (not included).
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• Tokenization: Tokenize

This transformation transforms each value into a token, which keeps only
certain properties of the original data. Tokenization is further described in
Definition 2.13. Since tokenization functions usually need to be adapted
to specific underlying data and use cases, providers can specify custom to-
kenization functions as an argument. These functions may or may not be
reversible or randomized.

– func: A function that is applied to every value that is to be tokenized.

• Shifting: Shift

Shifting describes each user only transmitting data after adding a, per user,
fixed offset, as defined in Definition 2.17. The offset is chosen from a uni-
form distribution:

– size: defines that the offset is chosen uniformly at random from the
range (−size/2, size/2), where−size/2 and size/2 are not included.

• Perturbation: Pert

Similar to shifting, all values are shifted by a certain random offset. How-
ever, as defined in Definition 2.15, this offset is not fixed per user, i.e., is
chosen anew for each value. Again, the offset is chosen from a uniform
distribution, which means we have the following parameters:

– size: defines that the offset is chosen uniformly at random from the
range (−size/2, size/2), where−size/2 and size/2 are not included.

• Differential Privacy Perturbation: PertDP

This transformation is also just a perturbation as defined in Definition 2.15,
with the difference being that only types of noises that can be used towards
achieving differential privacy are available. Following this, the parameters
specify which ε and δ should be achieved using the specified types of noise.
These parameters, together with some information about the range of values
in a specific data stream and which notion of differential privacy (user-level
or event-level) should be achieved, then implies the parameters used for
generating the noise.

– DP -notion: event-level or user-level

– ε: Which value of ε for differential privacy we want to achieve.

– δ: Which value of δ for differential privacy we want to achieve.
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– noiseType: What type of noise is used, e.g. gaussian or laplacian.
Not all types of noise can be used to achieve all combinations of ε and
δ.

• Bucketing: Bucket

As described further in Definition 2.18, bucketing is a transformation where
each value is assigned to a certain bucket. The released data then only
contains which bucket a value is a part of and not the original value, thereby
reducing the amount of information. For ease of management, each bucket
can also be assigned a label:

– buckets: A list of individual bucket definitions. Each such definition
contains two numbers min and max, which means that all values in
the range (min,max) should be assigned to this bucket (including
min, not including max). Optionally, a label can be used to name a
bucket. For multidimensional data types (e.g., location coordinates),
multidimensional buckets can be set.

• Time Resolution: TimeRes

The idea here is to define a time range (e.g., a day) and only release data ag-
gregated over this range of time, as defined in Definition 2.19. Which exact
statistics are released can also be set, which implies that this transformation
also corresponds to the third type of redaction from Definition 2.16.

– nSeconds: How many seconds the range of time that data should be
aggregated over has.

– AggrFuncs: Exactly which aggregate statistics are released (e.g.,
count, sum, variance).

• Population Resolution: PopRes

The concept is the same as for time resolution, but the aggregation is over
people instead of time (as defined in Definition 2.20). Again, which statis-
tics are released is exposed as an argument to this transformation.

– nPeople: How many people should be aggregated over.

– AggrFuncs: Exactly which aggregate statistics are released (e.g. count,
sum, variance...).

• Unmodified Data Release: UnmodRelease

Finally, this ”transformation” corresponds to not doing any privacy trans-
formation, i.e., just releasing the data to the provider without restriction.

34



With this, we conclude our overview of the supported privacy models and trans-
formations. The goal was to capture the most significant transformations in use
today or commonly used in recent research, so many different privacy preferences
users can be expressed using these transformations. However, it is worth noting
that our approach is general enough to handle many other privacy transformations
with minimal modifications.

4.2.2 Expressing Policies

In this section, we present data schemas and privacy options in detail (also see
Figure 4.2), and how these parts come together to form a comprehensive privacy
policy.

Data Schema. Towards creating suitable privacy policies for an application, it
is essential to know precisely which data an application is processing. As we
focus on time series (or streaming) data, data schemas usually already exist, e.g.,
for Apache Kafka [1] or for some SQL database. Our data schema expands such
schemas with some specific information that helps towards achieving favorable
tradeoffs. As with existing schemas, the service provider defines our extended
schemas that include privacy controls.

Our data schema is built around three core concepts: event streams, value streams,
and privacy groups.

• A value stream is a continuous flow of values, each of which has an associ-
ated timestamp. For example, location data transmitted every few seconds
to a navigation application would be classified as a value stream.

• An event stream is a collection of value streams that share timestamps. For
example, if we have a sensor that measures air pressure and wind direction
once a second, value streams for air pressure and wind direction can be
unified into a value stream.

• Finally, privacy groups are also collections of value streams but orthogonal
to event streams. Instead of signifying common timestamps, these are used
if values are closely correlated or imply each other. For example, consider
location data and data on the movement speed and direction of a person.
These two types of data each imply the other (modulo the starting position).
By designating such value streams as being in the same privacy group, our
system can respect such impacts on privacy.

Following this discussion, we define the schema for a value stream as follows:

35



• name (required)

The name of this value stream.

• type (required)

The data type of this value stream. The type may be any numerical type,
either as a scalar value or a tuple (e.g., coordinates to represent location).

• privacy group (optional)

Defines to which privacy group this value stream belongs. If not defined,
this value stream forms a privacy group with itself as the only member.

• range (optional)

For each scalar value in the data type (i.e. once for each entry of a tuple),
define the range of available values as (min,max) (min included, max
excluded). If not defined, we assume the full range the chosen data type can
represent.

• description (optional)

Optional description

An event stream is then simply a list of value streams as defined above.

While range is an optional attribute, it is of central importance if differential pri-
vacy is to be used. In which range values need to lie directly gives an upper bound
for the l1-sensitivity (see Definition 2.3) of many types of aggregations. In turn,
this upper bound (together with the parameters specified for PertDP) determines
the amount of noise added to the results. Unsurprisingly, a smaller range implies
less noise needs to be added, i.e., results conforming to differential privacy will
be more accurate for fixed values of ε and δ

Example 4.1 provides a straightforward example of how a value stream could be
instantiated. A more comprehensive example involving multiple value streams
can be found in Section 4.2.2.

Example 4.1 (Value Stream).
name: ”heartRate”
type: long
privacyGroup: 1
range: [0, 250]

Metadata As already outlined in Section 4.1, metadata will be a crucial compo-
nent for our privacy planner. Metadata allows providers to filter for specific users
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in their queries to do more meaningful analyses. For example, querying for film
preferences of people under 30 requires that users’ have assigned age metadata.
We think of metadata as just a value stream but, additionally, assume that there
are only infrequent updates (e.g., once a year for age).

In addition to ”core” data, metadata is needed for many types of queries to deter-
mine if a specific stream should be included. In this thesis, we consider metadata
as just another data stream, albeit with infrequent updates. Typical examples of
metadata include age, which changes once a year, or the municipality of residence,
which likely changes not more than once every few years.

Most attributes are the same as for normal value streams. An additional boolean-
valued attribute metadata distinguishes metadata streams from normal value streams.
We also make an additional attribute symbols available for metadata stream, which
is required if the type is set to enum (which is not allowed for regular value
streams). The reason for this is that many privacy transformations only work for
numeric types. However, by applying bucketing to numeric types (or just encod-
ing enums as integers), the same result can be achieved. This argument expects a
list of strings, which defines the list of available symbols. Example 4.2 illustrates
this.

Example 4.2 (Metadata Stream).
name: ”residentialRegion”
metadata: true
type: enum
symbols: [”North”, ”East”, ”South”, ”West”]

Metadata streams can either be on a user level or part of event streams like stan-
dard value streams. Defining metadata streams as part of event streams indicates
that a particular metadata attribute is a property of an event stream (e.g., the type
of sensor producing the data for a specific event stream). However, the two options
do not have any functional differences.

Transformation Chains After discussing which privacy transformations are
available in our system and how to express data schemas, we now introduce trans-
formation chains. Transformation chains are, in essence, a sequence of transfor-
mations. By allowing privacy transformations to be combined, additional trade-
offs regarding privacy and utility are possible. For example, we may want to
specify that data is only released as daily aggregation over ten people, a sequence
of two transformations: Aggregation over time and aggregation over people.
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At the beginning of Section 4.2, we have defined which privacy transformations
are available in our system. Here, we define which combinations of these trans-
formations we support.

While there are almost limitless possibilities for combining transformations, not
all combinations make sense. We identify five chains, which include optional
steps, to realize a large class of transformations. In our system, we then support
any instantiated chain (sequence of transformations including instantiated argu-
ments) which adheres to this model.

Definition 4.3 (Available Chains).
• Private Sharing Chain: (RangeRed)→ (Bucket)→ (TimeRes)→ (PopRes)
→ (Pert/PertDP)

• Tokenization Chain: Tokenize
• Deletion Chain: RedField
• Metadata Chain: Shift/Bucket
• Public Chain: UnmodRelease

where the following notation was used:

• “()”: optional

• “/”: one or the other

• ”→”: one after the other

So, as an example, bucketing data and then adding noise to the bucket counts
would be an instance of the private sharing chain, while first adding noise to data
and then bucketing it would not be supported.

Privacy Options Having defined chains, we can now define privacy options,
which most notably include an instantiation of a particular chain that defines
which combinations of transformations can be done on a particular value stream.
For example, a privacy option may specify a chain that mandates bucketing data
and then aggregating it over 100 users. To comply with this option, transforma-
tions done on data associated with this option need to include these two transfor-
mations. In other words, the idea is that a privacy option defines a minimum re-
quirement regarding which privacy transformations are applied to a specific value
stream. For a sequence of transformations to be compliant with a privacy option,
data must undergo at least the listed transformations (more on this later).

To this end, we define that privacy options are expressed with the following schema:

38



Definition 4.4 (Privacy Option).
• name (required)

The name of this privacy option.
• chain (required)

Which chain from Definition 4.3 this instance belongs to.
• transformations (required)

The transformations and associated parameters (as defined in the beginning
of Section 4.2).

• appliesTo (optional)
To which value streams can this option be applied. A unique option, meta-
data, is used to refer to all metadata streams. By default, an option can be
applied to all value streams (and metadata streams for the metadata and
deletion chains).

• description (optional)
Optional description

Again, as can be seen in Figure 4.2, the provider is responsible for defining privacy
options. Through this, they indirectly define which privacy policies are possible,
i.e., they set the bounds in which users can choose their privacy policies. Most
importantly, this determines which types of queries are possible on users’ data.
Different options could be made available to different users, e.g., to comply with
privacy regulations in different jurisdictions or make more options available to
paying users, though we do not discuss this further.

Example 4.5 provides a possible instantiation of a private sharing chain, where
the aggregations sum, count, and mean are made available. To comply with this
privacy option, only one such aggregation is made available each day (86400 sec-
onds), and laplacian noise needs to be added to those aggregations. Queries need
to add noise to the results of the above aggregations such that event-level DP with
ε = 2 and δ = 0 is not violated.

Example 4.5 (Privacy Option).
name: ”Differential Privacy”
chain: ”Private Sharing”
transformations: [
(”TimeRes”, {86400, [”sum”,”count”,”variance”]}),
(”PertDP”, {”event-level”, 2, 0,”laplace”})
]
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Example 4.6 (Privacy Option).
name: ”Heart Rate Buckets”
chain: ”Private Sharing”
transformations: [(”RangeRed”,{60, 100}), (”Bucket”, [{0, 40}, {40, 60},
{100, 130}, {130, 160}, {160, 200}])]
appliesTo: [heartRate]

Such transformation chains with specific parameter selections may not be suitable
for all value streams of an application. For example, we may define a chain that
defines buckets for heart rates. These buckets will likely not fit any other value
stream. For such situations, we have the ”appliesTo” argument. By specifying
”heartRate” for a correspondingly named value stream, the privacy option can
only be applied to the value stream schema named ”heartRate” (see Example 4.6).

More generally, since the application directly implies the data schema, there is not
a lot that a provider can choose. For the privacy options this is different. Here, the
provider influences which kinds of analyses are possible on top of data streams by
setting corresponding privacy options.

So far, we have discussed how privacy options apply to regular value streams. For
metadata streams, the same rules hold, with one exception: Only privacy options
featuring deletion and metadata chains may be chosen. Since metadata streams
are assumed to update infrequently, many chains that make sense for regular value
streams would not work as expected for metadata streams. In addition, supporting
arbitrary matching formulas is impossible under all transformations, e.g., if some
metadata is bucketed, comparing this data to a fixed value that lies in the middle
of the bucket could produce any result.

Privacy Policy Privacy options, as discussed above, constitute the main building
blocks for privacy policies. For each value stream, a privacy policy defines a set
of privacy options that can be applied to this value stream. Such a privacy policy
can now be chosen by users directly or set by experts based on users’ privacy
preferences (see Figure 4.2). Even if a policy is automatically chosen based on
users’ preferences, the policy must be materialized (i.e., the privacy policy is in
a form compatible with the API we describe in this section), which can then be
used, e.g., for audits. Formally, we define a privacy policy as a list of privacy
policy parts:
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Definition 4.7 (Privacy Policy Part).
• valueStreams (required)

A nonempty list of names of value streams to which the options below apply.
• privacyOptions (required)

A nonempty list of names of options, which can be applied to the value
streams defined above. Each privacy option in this list needs to be compati-
ble with all value streams, based on each options’ ”appliesTo” attribute and
taking into account the restriction that only certain chains can be applied
to metadata value streams.

Example 4.8 shows a possible scenario where a privacy policy part allows two
privacy options (and with this transformation chains) named ”Heart Rate Buckets”
and ”Differential Privacy” on a value stream with the name ”heartRate”.

Example 4.8 (Privacy Policy Part).
valueStreams: ”heartRate”
privacyOptions: [”Heart Rate Buckets”,”Differential Privacy”]

To be considered complete, each privacy policy needs to specify privacy options
for each value stream:

Definition 4.9 (Privacy Policy). A privacy policy for a particular data schema
consists of privacy policy parts, such that each value stream contained in this
data schema (including metadata streams) is part of exactly one privacy policy
part.

A part that is implicitly defined by privacy policies is the privacy budget, which
will become important in Section 4.3. If we have transformations involving dif-
ferential privacy, it is natural to think of privacy budgets in terms of ε and δ, re-
stricting how much personal data can be leaked. Running a query then consumes
some of this budget, which is one of the most critical constraints regarding which
data can be used for queries.

To have a unified model (which we will use for our privacy planner), we assign
a budget to all chains, either explicitly (for differential privacy) or implicitly (for
other chains). In principle, we can assign chains (and therefore privacy options)
without differential privacy any budget. It is, however, essential to appropriately
define the cost in terms of this budget for queries. If the query includes an aggre-
gation, this query will consume the whole budget (to prevent differencing attacks).
If it does not include aggregation, we only need to consume a tiny amount, such
that no aggregation is possible anymore.

Using this assignment from budgets to privacy options as a basis, we can then as-
sign each value stream a budget based upon which privacy options were assigned
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to this value stream by the privacy policy. However, we leave a detailed discussion
of this to Section 4.3

Another open question is what precisely the effect of privacy groups is. We have
defined this as follows: Two (or more) value streams in a privacy group share their
privacy budget (the initial budget is the minimum of any value streams’ budget).
Therefore, any privacy budget consumption via one value stream uses up (part of)
the budget for all value streams in the group.

Case Study In the following, we present a case study of a hypothetical fitness
app. The goal is to highlight how to define data schema, policy options, and
privacy policy for such an application and how the different parts of the user-
centric privacy design interrelate.

Data Schema:

EventStream1

- name: ”location”
type: (float, f loat)
range: ([−90, 90], [−180, 180])

- name: ”dataSource”
type: enum
metadata: true
symbols: [”gps”, ”WLAN”, ”hybrid”]

EventStream2

- name: ”heartRate”
type: long
privacyGroup: 1
range: [0, 250]

- name: ”stepsPerMin”
type: long
privacyGroup: 1
range: [0, 300]
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UserLevelMetadata

- name: ”weight”
type: long
metadata: true
range: [0, 250]

- name: ”age”
type: long
metadata: true
range: [0, 130]

In this data schema, we have a total of six value streams. Three of those value
streams are metadata streams and can be used by the provider to filter users based
on their values. Each stream forms its individual privacy group, except ”stepsPer-
Min” and ”heartRate”, which are in a joint privacy group since a correlation be-
tween heart rate and steps per minute is at least plausible. The location has a
tuple data type (float, f loat) which can store latitude and longitude, while ”data-
Source” has enum as data type, and either ”WLAN”, ”GPS”, or a hybrid approach
as possible options. The other streams all have the long data type and defined
ranges to support differential privacy.

Privacy Options:

- name: ”Private”
chain: ”Deletion”
transformations: [”RedField”]
appliesTo: [”metadata”]

- name: ”Differential Privacy”
chain: ”Private Sharing”
transformations: [(”TimeRes”,(86400, [”sum”, ”count”, ”variance”])),
(”PertDP”, (”user-level”, 2, 0,”laplace”))]

- name: ”Daily Aggregates”
chain: ”Private Sharing”
transformations: [(”TimeRes”, 86400)]
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- name: ”Heart Rate Buckets”
chain: ”Private Sharing”
transformations: [(”RangeRed”,{60, 100}), (”Bucket”, [{0, 40}, {40, 60},
{100, 130}, {130, 160}, {160, 200}])]
appliesTo: [heartRate]

- name: ”Shift”
chain: ”Metadata”
transformations: [(Shift, 4)]

- name: ”Public”
chain: ”Public”
transformations: [UnmodRelease]

The provider offers six privacy options, which are ordered roughly according to
the privacy protection provided. Most of them can be applied to any value stream,
except ”Private” (which can only be used in conjunction with one of the three
metadata streams) and ”Heart Rate Buckets” (which can only be applied to the
value stream named ”heartRate”)

Privacy Policy:

- name: ”location”
policies: [”Differential Privacy”]

- name: ”dataSource”, ”weight”
policies: [”Public”]

- name: ”heartRate”
policies: [”Differential Privacy”, ”Heart Rate Buckets”]

- name: ”stepsPerMin”
policies: [”Differential Privacy”, ”Daily Aggregates”]

- name: ”age”
policies: [”Shift”]

Note that the above example is only one of many possibilities of how a privacy
policy could be defined, given the above data schema and privacy options. In
this policy, all non-metadata value streams can be accessed using the ”differential
privacy” privacy option, while the ”heartRate” and ”stepsPerMin” streams can ad-
ditionally be accessed using the privacy options ”Heart Rate Buckets” or ”Daily
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Figure 4.4: A closer look at inputs and outputs of the privacy planner.

Aggregates” respectively. Metadata is either public (dataSource), i.e., no restric-
tions apply, or shifted by a certain amount.

4.3 Privacy Planner
Following the discussion from Section 4.2, we now have a system that includes
a set of event and value streams (according to an application-wide data schema)
as well as a corresponding privacy policy for each stream. Each of these privacy
policies defines a privacy budget for each value stream, as well as constraints re-
garding what sequences of transformations (i.e., authorized transformation chains)
can be executed on a specific value stream. Finally, each user has some metadata
(represented as slowly changing metadata value streams). Figure 4.4 provides an
overview.

The provider can now specify a set of (transformation) queries, which signify
what kind of analyses (i.e., transformation chains) they want to run on users’ data.
Conceptually, we think of a large set of small transformations to bring data into
a privacy-compliant view. As an example, consider a set of users whose privacy
policy requires the provider to make aggregations over at least 100 users. The
provider may now want to aggregate over 1000 users. In this case, it makes sense
to issue ten queries over 100 users each. On the resulting policy-compliant view,
these ten queries can then be combined. However, also arbitrary other processing
of these ten results is possible without violating any privacy policies.

This approach is essential for queries that do not include differential privacy, as
strictly more information can be obtained without violating privacy policies. For
queries with differential privacy, results that aggregate over ten times more peo-
ple will typically also have correspondingly less noise. However, it is still not
a disadvantage to run multiple small queries instead of a large one: The more
considerable noise from the more minor queries will cancel out in expectation.
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We assume that each transformation query has a specific profit (the value a specific
query has for the provider), a cost in terms of privacy, and certain conditions in
terms of metadata. Conditions on metadata (called ”Data Selector” in Figure 4.4)
refer to filtering which streams can take part in a transformation chain (like the
SQL ”WHERE” clause). Profit gives the provider control over which transforma-
tion chains they want our privacy planner to prioritize. For example, a provider
may want to run 20 different transformation chains, and of each transformation
chain a sizeable number. Additionally, they prefer running a small number of
each transformation chain than a more significant number of only a single trans-
formation chain if not enough streams are available. In essence, the provider can
express such complicated preferences by appropriately defining profits. Finally,
the privacy cost is the cost in privacy that executing a transformation chain has on
users’ value streams (or privacy groups).

Conceptually, the privacy planner takes privacy policies and queries and com-
putes a transformation plan. This transformation plan contains an assignment of
users’ data streams to queries, start and end dates, which indicate how long the
current matching is valid. It considers, among other constraints, the privacy cost
of queries on the privacy budget of value streams and groups and specific re-
quirements regarding user metadata as specified by the data selector. Finally, the
privacy planner takes profits into account to determine which queries to priori-
tize. The goal is to maximize the sum of profits for queries in the transformation
plan while respecting all users’ privacy policies. Our privacy planner then allows
near-optimal assignments (regarding the sum of profits) of users’ data streams to
providers’ queries.

A component similar to the privacy planner is a requirement for any system that
adopts a user-centric privacy design to extract utility safely from data while re-
specting users’ privacy policies. For example, in Zeph [4], this component is
called the policy manager. The policy manager uses a simple greedy approach
to assign data streams to queries. We improve upon their design by introducing
query profits and formulating the problem of computing a transformation plan as
a constrained optimization problem. We consider an offline (or batch) approach,
where we run the privacy planner after collecting a set of queries and data streams.
Since this optimization can be expensive, we can include some slack (assign more
users than needed) to a transformation to prevent it from failing as soon as a sin-
gle user drops (which can happen with a high likelihood for aggregations includ-
ing several hundred users). On the other hand, if new streams join, we can also
add them heuristically without completely rerunning the optimization, possibly to
transformations who recently ”lost” streams. To still not get too suboptimal re-
sults, we could set a threshold regarding how many users drop and join and rerun
the complete optimization as soon as we pass that threshold.
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The transformation plan produced by our privacy planner can then be used to
compute a privacy-compliant view of the data (see Figure 4.1).

Towards the goal of presenting the inner workings of our privacy planner, we will
first present how the provider precisely can specify queries. Given this specifi-
cation, we present in detail what kinds of constraints and problems arise towards
fulfilling these queries as well as possible. Finally, we present two approaches to
solving this problem: A greedy, heuristic approach and an integer linear program
(ILP) approach, generating (near) optimal transformation plans.

4.3.1 Expressing Queries

In this section, we define how queries can be expressed, and with this, define the
possible set of queries considered in this work. The challenge is to provide both an
expressive schema that allows many different queries while at the same time not
creating a situation for the privacy planner that cannot be solved efficiently. Our
query schema is a careful compromise between being expressive while supporting
an efficient privacy planner. Recall that privacy policies describe which chains of
privacy transformations respect the users’ privacy preferences. Unsurprisingly,
we opt for a query schema that follows a similar structure to simplify the job of
the privacy planner. The query schema consists of required and optional attributes
and defines a transformation chain to be executed.

Similar to how we described the supported privacy transformations in the privacy
design in Section 4.2, we first define which kinds of transformations with which
parameters are available in our system. The difference is that in a query, we spec-
ify a transformation chain executed on data (and not a ”minimum” as for privacy
options). As a result, we require slightly different arguments. In addition to poten-
tially changed parameters, we also define when a transformation that is part of a
query is compatible with its counterpart from a privacy option. This compatibility
between individual transformations will become important later when we define
if a query and a privacy option are compatible.

• Range Redaction: RangeRed

Here, we specify the same arguments as in the corresponding privacy op-
tion: The min and max of the redacted range. It matches its counterpart in
a privacy option if and only if the redacted ranges are the same.

– min: Defines the minimum of the redacted range (included).

– max: Defines the maximum of the redacted range (not included).
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• Tokenization: Tokenize

Again takes the same arguments as its counterpart used in Section 4.2, and
only matches it if the instantiated arguments are the same.

– func: A function that is applied to every value that is to be tokenized.

• Shifting: Shift

Again, it has the same arguments as its counterpart and matches it if the
instantiated arguments are the same.

– size: defines that the offset is chosen uniformly at random from the
range (−size/2, size/2), where−size/2 and size/2 are not included.

• Perturbation: Pert

Again takes the same arguments but matches its counterpart if the added
noise by the query is at least as big as specified in the privacy option.

– size: defines that the offset is chosen uniformly at random from the
range (−size/2, size/2), where−size/2 and size/2 are not included.

• Differential Privacy Perturbation: PertDP

For differential privacy perturbation, the arguments look very different: DP -
notion and noiseType are the same as for privacy options, but the argu-
ments ε and δ have been replaced by four new arguments: epsPerRes,
deltaPerRes, epsTotal, and deltaTotal.

The first two arguments control how much budget is used per generated
result. These two arguments are enough information for event-level differ-
ential privacy, but for user-level differential privacy, we also need to specify
how much privacy budget the query needs in total for privacy planner. For
user-level differential privacy, dividing the total budget by the used budget
per results (for ε and δ separately, and then take the minimum) then gives
the total amount of how many results the query will return until the bud-
get is used up. Note that this is a consequence of sequential composition
(Theorem 2.7): If we generate k results and each of them has a differential
privacy cost of (ε, δ), the total privacy cost is (k · ε, k · δ).

This transformation matches its counterpart only if multiple conditions are
fulfilled: First, DP -notion and noiseType need to be the same. If we have
event-level differential privacy, enough ε and δ budget needs to be available
to accommodate epsPerRes and deltaPerRes. For user-level differential
privacy, the same holds true but with epsTotal, and deltaTotal as costs.
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– DP -notion: event-level or user-level.

– epsPerRes: How much epsilon should be used for each generated
result.

– deltaPerRes: How much delta should be used for each generated
results.

– epsTotal: How much epsilon should be used in total (for user-level
dp).

– deltaTotal: How much delta should be used in total (for user-level
dp).

– noiseType: What type of noise is used, e.g. gaussian or laplacian.
Note that not all types of noise can be used to achieve all combinations
of ε and δ.

• Bucketing: Bucket

This transformation now again takes the same arguments as its counterpart
for privacy options and only matches if the instantiated arguments are the
same.

– buckets: A list of individual bucket definitions. Each such definition
contains two numbers min and max, which means that all values in
the range (min,max) should be assigned to this bucket (including
min, not including max). Optionally, a label can be used to name a
bucket. For multidimensional data types (e.g., location coordinates),
multidimensional buckets can be set.

• Time Resolution: TimeRes

While time resolution again takes the same arguments, it matches a privacy
option only if nSeconds is instantiated higher than or the same as in the
option, and each aggregation function in AggrFuncs is also part of the
instantiated argument in the privacy option.

– nSeconds: How many seconds the range of time that data should be
aggregated over has.

– AggrFuncs: Exactly which aggregate statistics are released (e.g.,
count, sum, variance).

• Population Resolution: PopRes

Again, the arguments are the same. However, it matches only if each aggre-
gation in AggrFunc is contained in the AggrFunc of the privacy option.
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Note that nPeople does not play a role in determining whether or not an op-
tion’s transformation matches. If the query specifies fewer people than the
privacy option, we can assign as many people as demanded by the privacy
option and still run the query.

– nPeople: How many people should be aggregated over at least.

– AggrFuncs: Exactly which aggregate statistics are released (e.g. count,
sum, variance...).

Note that field redaction is not a transformation available for queries, as just
redacting data would not make much sense in a query.

In the above, we have always specified exactly when a transformation specified
in a query matches a transformation specified in a privacy option. However, we
have not yet explained when a transformation chain specified in a query matches a
transformation chain specified in a privacy option. We define this as follows: For
a transformation chain of a query (query transformation chain) to match a trans-
formation chain in a privacy option (option transformation chain), each transfor-
mation in the option transformation chain must have a match (as defined above)
in the query transformation chain, i.e., the same transformation with appropriate
parameters.

With this, we can now define the schema for a query as follows:

• name (required)

Which name the query should have.

• inputSchema (required)

Define which value stream schema should be used as input. The chosen
name must correspond to the name of a value stream in the data schema of
the same application. Note that this restricts queries to operate on only one
kind of value stream. However, since arbitrary post-processing is allowed,
data from different value streams may still be combined.

• chain (required)

Which chain (see Section 4.2.2) is used.

• transformations (required)

Which transformation chain is used to transform data. It needs to conform
to the type of chain defined above, with parameters as defined earlier in this
section (and often different from the parameters used in privacy options).
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• conditions (optional)

Define a condition on any metadata streams similar to a SQL ”WHERE”
clause. Then, it will only take into account streams that fulfill these condi-
tions.

• numberAndProfit (optional)

A list that defines two things at once: How often should this query execute
the defined transformation chain and the profit for each execution. E.g.
[(10, 300), (5, 100)] means we want to execute the chain in total 10+5 = 15
transformations. We assign the first 10 transformation chains a profit of 300
each and the other 5 a profit of 100 each.

Note that we will try to optimize the sum of profits of all executed transfor-
mation chains in the following. If the goal is to run as many transformation
chains from as many different queries as possible, the idea is to assign a
high profit for a few chains and lower profits for others. Since the profit
is not weighted by population constraints (from PopRes), the assignment
should assign higher values to queries with high population requirements.
Consider the following example: We have two queries, one involving an
aggregation over 100 users and one over 1000 users. In all other regards,
they are the same, which also means their privacy cost is the same for each
assigned stream. Accordingly, the second query (over 1000 users) uses ten
times more privacy budget. Suppose we assign both queries the same profit.
In that case, the query over 1000 users has a much lower profit to privacy
cost ratio, and our privacy planner will likely prioritize the query with 100
users.

If this attribute is not set, the default is [(1, 1)], i.e., we want to execute the
chain one time and assign it a profit of 0.1.

Building on the case study presented in Section 4.2, a possible query defined using
the above schema could look as follows:
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Example 4.10 (Query Schema).

- name: ”dailyHeartRate”
inputSchema: ”heartRate”
chain: ”Private Sharing”
transformations:
[(”RangeRed”, (60, 100)),
(”Bucket”, [{0, 40}, {40, 60}, {100, 130}, {130, 160}, {160, 200}]),
(”TimeRes”, (86400, [sum, count, variance])),
(”PopRes”, (100, [sum, count, variance])),
(”PertDP”, (user-level, 0.01, 0, 1, 0, laplacian))]
conditions: residentialRegion==”Zurich” && age>= 50
numberAndProfit: [(10, 400), (200, 50)]

- name: ”weeklySteps”
inputSchema: ”stepsPerMin”
chain: ”Private Sharing”
transformations: [(”TimeRes”, [604800])]
conditions: age<= 65
numberAndProfit: [(100, 3), (1000, 1)]

4.3.2 Problem Statement

This section outlines the challenges of matching queries and users’ streams in a
user-centric design. The goal is to maximize the sum of profits (from executable
queries) while not violating any constraints set by privacy policies or by queries
regarding users’ metadata. After discussing the challenges, we discuss two differ-
ent approaches to solve the problem: A heuristic approach and an integer linear
program (ILP) approach.

C1: Privacy Policy Compatibility The first challenge is to determine, based on
each users’ privacy policy, which queries can use a users’ data. In other words, we
need to make sure that the result generated by our privacy planner complies with
all privacy policies. However, we do not include population constraints here, i.e.,
if a privacy option only allows aggregations over specific amounts of people. We
treat this challenge separately since the approaches to this challenge are pretty dif-
ferent from respecting population constraints. We also do not take privacy budgets
into account in this challenge and instead set this as the next challenge.
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C2: Managing Privacy Budgets The second challenge is managing privacy
budgets. For differential privacy, this implies deciding which queries get allocated
what amounts of ε and δ. However, for queries and privacy options that do not
involve privacy options, we often need to limit how often data can be reused before
reconstruction attacks become feasible. Unifying these different kinds of budgets
is part of this challenge. Else we would end up with data silos that have to be
queried separately.

C3: Taking Metadata into Account The third challenge is now to conform to
a query’s ”conditions” attribute, i.e., the data selector from Figure 4.4.

C4: Handling new users and dropouts Users could leave and join the system
at any time. The fourth challenge is to ensure that our privacy planner takes this
into account, i.e., we do not want to rerun the complete optimization each time a
new user leaves or joins. This challenge also includes changing metadata, which
can make a user suddenly infeasible for a query.

C5: Respecting Population Constraints The fifth challenge is given by actu-
ally respecting the population requirements of both any participating streams and
queries. For example, suppose a query only needs 100 users, but an otherwise
compatible (see C1) privacy option demands 1000 users. In principle, this query
can still use data under this privacy option but needs to assign at least 1000 users
if a user with these requirements is included. Whether or not it is worth it to there-
fore include such users depends on the specific situation. For example, suppose
there are almost exclusively users in the system that allow queries only if aggrega-
tions include at least 1000 people. In that case, it might not be possible otherwise
to run the query.

C6: Maximizing Profits Finally, the last challenge is to respect the above chal-
lenges while maximizing the sum of profits of executed queries. For each transfor-
mation chain, we use an all-or-nothing principle: Either the transformation chain
runs and therefore generates a profit as specified in numberAndProfit, or it does
not run and generates 0 profit.

Addressing the challenges Seeing all those challenges, we will now address
how we approach them in our privacy planner.

First, note that challenges C1 and C3 can be addressed by ”filtering”: For each
stream and each query, we can independently check whether they match metadata
and privacy policies. We cannot check C2 (budget constraints) and C5 (population
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constraints) this way since whether or not we fulfill these conditions also depends
on the assignment of other streams. If a stream and query pass these checks, we
will describe them as compatible in the following.

As explained above, a query can match a users’ value stream if that value stream
is assigned a matching privacy option. This condition means that each transfor-
mation that is part of this privacy option is also part of the queries transformation
chain, and these corresponding transformations have compatibly instantiated ar-
guments. As an example, consider a query aggregating data over one hour. We
can use data that needs to be aggregated over 100 seconds, but not data that re-
quires daily aggregations. On the other hand, metadata can be checked by simply
evaluating the conditions set in the query on each user’s current metadata.

This discussion immediately brings us to challenge C4: What happens if users
drop out, or their metadata no longer matches queries original specifications. We
propose three mechanisms to deal with this challenge: First, we can always as-
sign more users to a query than it requires (e.g., 110 users if the query requires
an aggregation over 100 users). This way, we have some slack if users drop out
or become ineligible. Second, based on the heuristic approach discussed later, we
can prioritize assigning new users or users with changed metadata that have be-
come ineligible to queries where many users dropped out. Finally, if the metadata
changes predictably (e.g., the age will only change once a year), we can refrain
from assigning streams that will become ineligible for a specific query soon.

For the second challenge (C2), we first present how to unify the privacy budget
for differential privacy options and other options. As already explained, for dif-
ferential privacy, the budget is given by particular values for ε and δ. For other
privacy options, we set this budget to an arbitrary, fixed number (e.g., one mil-
lion, in both dimensions). This way, all privacy options imply a two-dimensional
budget, allowing us to unify budget management. Using the budget implied by
each privacy option, the privacy policy then assigns each value stream a budget.
Suppose any privacy option that applies to a particular value stream has differen-
tial privacy included in its chain. In that case, the budget will be the maximum
differential privacy budget in terms of ε and δ. Otherwise, it will just be this fixed
number again (in both dimensions).

How much budget is consumed now depends on the query. Table 2 summarizes
the results, which we will discuss below. Depending on whether or not queries or
privacy options include differential privacy, different cases are possible.

• A differential privacy query applied to value streams with a differential pri-
vacy option will consume exactly the stated budget in terms of ε and δ. For
user-level differential privacy, this deduction corresponds to epsTotal and
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Costs Value Stream w/ DP Value Stream w/o DP
Query w/ DP
and w/ aggr.

as specified in Query
(ε and δ)

entire budget

Query w/ DP
and w/o aggr.

as specified in Query
(ε and δ)

(0.1, 0.1)

Query w/o DP
and w/ aggr.

entire budget entire budget

Query w/o DP
and w/o aggr.

(0.1, 0.1) (0.1, 0.1)

Table 2: The cost of applying a query to a value stream

deltaTotal, while for event-level it is given by epsPerRes and deltaPerRes,
as described above.

• A query without differential privacy applied to a value stream without differ-
ential privacy option will consume all available budget if the query includes
an aggregation (over people or time, to prevent differencing attacks). All
available budget means all budget that is available initially, i.e., no other
query may use this data. On the other hand, if no aggregation occurs, only
a tiny but nonzero budget is subtracted (e.g., 0.1 in both dimensions). In
this case, there is no need to prohibit other queries on the same data since
differencing attacks are not of concern if no aggregation is taking place.

• A query with differential privacy applied to a value stream without differ-
ential privacy (i.e., no option features differential privacy) will behave the
same as if the query did not have differential privacy in terms of budget.
It will, therefore, consume the entire budget to guard against differencing
attacks if aggregation is taking place. Otherwise, it just consumes a tiny
number (e.g., 0.1).

• Finally, a query without differential privacy could match a value stream
with differential privacy. This situation can only happen if at least two pri-
vacy options are assigned to the value stream, one with differential privacy
(which cannot match a query without differential privacy) and one without,
which matches the query. In this case, all available budget is consumed if
aggregation is taking place, and otherwise a tiny number (e.g., 0.1).

This discussion leaves challenges C5 and C6: How to respect population con-
straints and maximize profits. Since our solutions to these questions differ in our
two approaches, we will discuss these challenges in the respective sections.
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Abstract Problem Statement Towards finding optimal solutions, following from
the above discussion, we will now present a formal problem statement that con-
siders all the challenges as defined above. The problem of maximizing the sum of
profit becomes a constrained optimization problem. In the following, we denote
with ”equal profit group” (epg) a set of transformation chains that are part of the
same query and have the same profit. E.g., a query where the numberAndProfit
attribute is set to [(10, 100), (30, 20)] has two equal profit groups: One consisting
of 10 transformation chains, each giving (potentially) a profit of 100, and another
one consisting of 30 transformation chains, where each one can generate a profit
of 20.

Definition 4.11 (Formal Problem Statement). Let S = {s1, ..., sn} be a set of
streams and EPG = {e1, ..., ek} the set of all all equal profit groups. Each
ej ∈ EPG has a associated profit p(ej) and par(ej) many transformation chains
are part of ej . A compatibility matrix C ∈ {0, 1}n×k defines if a stream si is
compatible with a equal profit group ej: si and ej are compatible if and only if
(C)i,j = 1. Additionally, each equal profit group ej has a minimum population
requirement pop(ej) and each stream si has a minimum population requirement
pop(si, ej) that depends on the query ej . Finally, each stream si has a budget
budget(si) and there is a matrix B ∈ Rn×k where the entry (B)i,j defines how
much budget ej would use from budget(si), if si is assigned to ej
The goal is now to find an assignment of streams si to equal profit groups ej , where
a stream can be assigned to multiple queries and multiple streams to one query
(i.e. a binary relation A ⊆ S × EPG), such that

∑k
j=1 yj ∗ p(ej) is maximized

while complying with the following constraints:
1. Number of transformation chains per epg: ∀j ∈ [k] : 0 ≤ yj ≤
par(ej), yj ∈ Z, i.e. only par(ej) many parallel executions count towards
the optimization goal

2. Stream and Query Population Requirements: For each epg ej , we can sub-
divide the streams assigned to ej into yj groups G = {g1, .., gyj}, such that
each group g ∈ G has a size |g| ≥ pop(ej) and for each si ∈ g we have
|g| ≥ pop(si, ej). This subdivision also needs to be part of the output (i.e.
it is not enough that this subdivision exists).

3. Compatibility requirement: ∀(si, ej) ∈ A : (C)i,j = 1, i.e. all assignments
are compatible

4. Budget Requirement: ∀si ∈ S :
∑k

j=1

(
1(si,ej)∈A · (B)i,j

)
≤ budget(si),

i.e. we use at most the given budget for each stream si
5. Uniqueness requirement: Let EPG(q) be all equal profit groups belonging

to some query q ∈ Q, where Q is the set of queries. ∀si ∈ S, q ∈ Q: Can
only assign si to at most one ej ∈ EGP (q)
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It is important to note that we only consider a one-dimensional budget for sim-
plicity, which means we are limited to δ = 0 for differential privacy. Such an
extension to two dimensions would be trivial: We introduce a second budget akin
to the first one, with the same constraints (but different values for many instan-
tiations). However, two-dimensional budgets may not even be needed even for
δ > 0: According to [20], if we want to enforce global differential privacy guaran-
tees, tracking ε is enough since computations are much more sensitive to ε than to
δ. The reason is that the noise added to enforce differential privacy scales linearly
in 1/ε and at most logarithmically in 1/δ for common types of noise. Therefore,
if we enforce certain levels of ε, enforcing particular levels of δ is possible with
only small amounts of added noise, which barely impacts the result.

Additionally, note that a stream in this problem corresponds to a value stream of
a particular user only if there are no privacy groups specified in the corresponding
data schema (remember that each value stream forms its own privacy group if
nothing different is specified). If there are privacy groups larger than one, a stream
in the above problem instead refers to all value streams of a specific user in a
particular privacy group. These then share a budget (and in the above formulation,
each stream has a separate budget). Finally, note that since queries only apply to
single types of value streams, we can look at the above problem separately for each
privacy group, which can be helpful for implementation purposes. In other words,
if we have optimal or near-optimal results for each privacy group separately, we
get optimal or near-optimal results for the global optimization problem.

In addition to the constraints expressed in Definition 4.11, we can assume that
there will only be a few distinct Stream Population requirements, i.e., the set
{pop(si, ej)|si ∈ S, ej ∈ EPG} is small. While this does not impact the correct-
ness of any solution to the problem, this assumption may help find faster solutions.

From this description, it should be clear that the problem is nontrivial to solve op-
timally in any nontrivial situation. Of course, if the queries partition the available
users without much overlap, trivially assigning users to the only available query
will deliver optimal results. Nevertheless, for a more realistic situation involving
a more extensive set of queries and users being compatible with multiple queries,
an optimal solution requires keeping track of all the above constraints while opti-
mizing profits.

Virtual Queries Before discussing the two approaches, we need to introduce
one additional concept: virtual queries

As stated above, we can assume that there will be only a few distinct stream popu-
lation requirements in the system. Let PR be the set of stream population require-
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ments in the system (e.g. {100,500,1000}). Let ej be some equal profit group be-
longing to a query with query population requirement x = pop(ej). Then the set of
virtual queries belonging to ej is given by {ej, e(max(x, 100))j , e(max(x, 500))j ,
e(max(x, 1000))j}, where e(y)j mean the transformation chain of ej was mod-
ified to include a query population requirement y (instead of x = pop(ej) as
before). So, in essence, we have several virtual queries corresponding to the dif-
ferent stream population requirements for each equal profit group.

4.3.3 Heuristic Approach

Before we dive into an optimal solution formulated as an integer linear program,
we present a greedy, heuristic approach. Solving integer linear programs is gener-
ally expensive. The goal of the heuristic approach is to deliver acceptable results
with more performance (i.e., faster to execute and less memory used) for situa-
tions where running the optimal solution is not feasible. In addition, it will serve
as a baseline in Section 6 to evaluate the performance of the near-optimal (in terms
of the result) approach.

Abstractly, the heuristic approach proceeds by ordering virtual queries depending
on how much profit they bring per assigned stream. As an example, a query that
aggregates over 100 people and a profit of 100 would be equal to a query without
aggregation over people and a profit of 1. In this example, both queries have a
profit of one per assigned stream. In other words, we use the potential profit per
assigned stream as a heuristic to decide on the order of queries. We then proceed
to assign streams greedily to queries according to this ordering.

We now present the heuristic approach in more detail:
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1. From the set Q of queries generate the set EPG of equal policy groups, and
from this V Q, the set of virtual queries.

2. For each virtual query vq ∈ V Q, determine all compatible streams, ad-
ditionally requiring that any stream population requirements are not larger
than the query population requirement of vq.

3. For each virtual query vq ∈ V Q, calculate the profit per user by dividing
the profit per transformation chain by the number of users.

4. Sort the virtual queries according to profit per user

5. Go through the sorted list of virtual queries, starting with the virtual query
with the highest profit per user. For each virtual query vq, we do the follow-
ing:

(a) Determine how many compatible streams also fulfill the budget re-
quirement and are not already assigned to another virtual query of the
same query.

(b) Determine how many streams m we can assign to this virtual query
at most to make a profit still (taking into account streams already as-
signed to other virtual queries of the same equal profit group).

(c) Add as many streams as possible to vq, without ”wasting” any. More
formally: If we have x available streams and vq has population re-
quirement y, we add min(m,x− (x mod y)) many streams. Each y
consecutive streams together for an ”execution group” (in the sense of
groups g ∈ G from Definition 4.11)

(d) Adjust the budget of any streams used this way.

6. By mapping the streams and execution groups assigned to each virtual query
vq back to the original query, we then have the desired mapping of streams
to queries.
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4.3.4 Integer Linear Program (ILP) Approach

Finally, we present our integer linear program (ILP) approach to solve Defini-
tion 4.11. While the heuristic algorithm should deliver acceptable results, this ap-
proach delivers optimal results, given the provider’s preferences. In other words,
it can make optimal use of privacy resources to generate as much value as possible
for the provider.

Before stating the program, we will quickly state some assumptions required to
understand all indices used in the ILP. We have a set of streams S = {s1, ..., sn},
a set of queries Q, a set of equal profit groups EPG = {e1, ..., ek} and, for
each ej ∈ EPG, a set of virtual queries SC(ej) = {vqj1 , ..., vqj|SC(ej)|

}. We
abuse notation by shortening ∀i ∈ [n] to ∀i, ∀j ∈ [j] to ∀j, ∀q ∈ Q to ∀q, and
∀j ∈ [k],∀a ∈ [|SC(ej)|] to ∀ja to keep the ILP as short as possible.

Definition 4.12 (Integer Linear Program).

• variables:
– ∀i, ja : xi,ja ∈ {0, 1}
– ∀ja : yja ∈ N0

• objective: max
∑

ja
yjapj

• subject to:
1. ∀i :

∑
ja
xi,ja · cj ≤ Bi

2. ∀ja :
∑

i xi,ja ≥ yja · pop(vqja)
3. ∀i, ja where (C)i,j = 0 or pop(vqja) < pop(si, ej) : xi,ja = 0

4. ∀j :
∑|SC(ej)|

a=1 yja ≤ par(ej)
5. ∀i, q :

∑
{ja|ej∈EPG(q) &&a∈SC(ej)} xi,ja ≤ 1

We will now offer some explanations as to why this ILP solves our problem.
Towards this goal, we will first clarify the meaning of the two types of variables.
xi,ja is a binary variable, and signifies whether or not stream si was assigned to
virtual query vqja . yja is a non-negative integer, which determines how many
transformation chains of some virtual query run.

With this in mind, we can now explain the different constraints and how they relate
to Definition 4.11.

• The first constraint (item 1) ensures that for each stream si, the set of as-
signed virtual queries si does not exceed the budget from si, i.e., it enforces
the budget constraint (Definition 4.11, item 4).

• The second constraint (item 2) ensures that there are enough streams as-
signed to each virtual query vqja to actually run yja many transformation
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chains. By definition of virtual queries, this solves the stream and query
population requirements (Definition 4.11, item 2), together with the third
constraint. We can get appropriate execution groups by arbitrarily partition-
ing streams assigned to a virtual query vqja into yja equally-sized partitions.

• The third constraint (item 3) both ensures that streams are only assigned to
a virtual query if compatible with the query (Definition 4.11, item 3) and,
together with the second constraint, ensures that stream and query popula-
tion requirements are not violated (Definition 4.11, item 2). Of course, in
an actual implementation, we would not add variables which can only take
a single value (i.e., 0).

• The fourth constraint (item 4) enforces that we can only profit from at most
par(ej) many transformation chains per equal profit group, i.e., any solution
to this ILP under this constraint will comply with Definition 4.11, item 1

• The fifth constraint (item 5) finally makes sure that for each query q, each
stream can only be assigned to at most one virtual query belonging to q, i.e.
it enforces the uniqueness requirement from Definition 4.11, item 5

From this discussion follows that, while the ILP and the abstract formulation in
Definition 4.11 differ in many regards, any solution to the integer integer program
from Definition 4.12 implies that a solution to the problem from Definition 4.11
with equal target value exists and vice versa. Additionally, we can efficiently
convert solutions between the two forms.
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5 Implementation
This section gives an overview of the prototype. First, we lay out how it was im-
plemented and present critical features. Then, we detail the interface and explain
the program behavior on a higher level. Finally, we mention which additional
limitations and assumptions are part of the prototype, different from our design.

We implement the privacy planner in Python 3.8.10 and support both the heuris-
tic approach and the ILP approach. To solve ILPs, we use Gurobi 9.1.2 with an
academic license and gurobipy as an interface between Python and Gurobi. We
support the full set of queries and privacy policies as defined in Section 4. Users
(with associated metadata and privacy policies) can be randomly generated in a
separate module by specifying a set of metadata attributes (including the range of
values) and privacy policies. For metadata, we used a custom distribution (see Ta-
ble 4), while a privacy policy is assigned, independently from metadata, uniformly
at random.

The data schema, queries, privacy options, and privacy policies must be defined
directly in the program itself. Constraints regarding metadata (e.g., only consider
people over a certain age) are expressed using python lambda functions [29]. If
the metadata is of the enum type, a corresponding class needs to be defined in
python (see [28]).

Several options can be set using command-line arguments when starting the pro-
gram. Most importantly, options exist to set the number of randomly generated
users and use the heuristic approach, the ILP approach, or both. In addition, we
can set how distant the ILP solution may at most be from an optimal solution
(which is enforced by Gurobi) and how long the ILP optimization part is allowed
to run at most. Another argument controls whether or not a random seed is chosen
(i.e., whether or not the user generation is pseudo-random). Finally, we can set if
we use the solution from the heuristic approach as a starting point in Gurobi or
not. Some other options control output behavior, modify the set of Queries, and
other minor modifications to the Gurobi solver exist.

Listing 1 provides an overview of how the program proceeds. In the following,
we will add some additional information:

1. We load the set of queries and privacy policies that are specified in the
program.

2. We randomly generate a set of users with associated metadata and privacy
policies.
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3. For all users and queries, we determine whether or not they are compatible
(challenges C1 and C3 from Section 4.3).

4. If the heuristic approach is enabled, we run it as described and save the
result.

5. If the ILP approach is enabled as well, we now build the ILP model. For
this, we first initialize the model, add variables to it, set an objective, and
add constraints. If the heuristic approach was run, we also add the heuristic
solution to the model, which can be used as starting point for the optimiza-
tion. Finally, we optimize the model and save the result.

6. As the last step, we compare the two approaches (if both were run) and
generate any needed output.

q u e r i e s , p r i v a c y p o l i c i e s = i n i t ( )
u s e r s = g e n e r a t e r a n d o m u s e r s ( p r i v a c y p o l i c i e s )
v i r t u a l q u e r i e s = g e n e r a t e v i r t u a l q u e r i e s ( u s e r s , q u e r i e s )

# c a l c u l a t e t h e c o m p a t i b i l i t y m a t r i x
c o m p a t i b i l i t y = c h e c k c o m p a t i b i l i t y ( u s e r s , q u e r i e s )

i f u s e h e u r i s t i c :
h e u r i s t i c a s s i g n m e n t = r u n h e u r i s t i c ( v i r t u a l q u e r i e s ,

c o m p a t i b i l i t y )

i f u s e i l p :
i l p m o d e l = i n i t i l p ( )
i l p m o d e l . a d d v a r i a b l e s ( v i r t u a l q u e r i e s , c o m p a t i b i l i t y )
i l p m o d e l . a d d c o n s t r a i n t s ( v i r t u a l q u e r i e s , c o m p a t i b i l i t y )

i f u s e h e u r i s t i c :
i l p m o d e l . s e t i n i t a l s o l u t i o n ( h e u r i s t i c a s s i g n m e n t )

# s o l v e t h e i l p w i t h g u r o b i
i l p a s s i g n m e n t = i l p m o d e l . o p t i m i z e ( )

i f u s e h e u r i s t i c and u s e i l p :
compar i son = c o m p a r e a s s i g n m e n t ( h e u r i s t i c a s s i g n m e n t ,

i l p a s s i g n m e n t )

Listing 1: Pseudocode which gives an overview of how the implementation pro-
ceeds
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While we, therefore, define privacy policies without any user input, no significant
changes are needed to support the case where users choose their privacy policy.
We can extract all chosen policies in a first pass and then assign them to the users
who chose them. This assignment can be implemented by overriding the module
which currently generates random users.

In the artifact, we have made several assumptions to focus on the most significant
issues. First, we assume that we only have a single type of value stream. However,
this assumption still covers the case with multiple types of value streams since
we can run the program for each type separately, as long as these types of value
streams are independent (as discussed in Section 4.3). In our design, this means
we assume that there are no privacy groups. Although, an extension to include
privacy groups would be pretty natural, as, in these, value streams of the same
user just share a budget.

Additionally, we assume that there are no transformations done on metadata and
that metadata does not change, even though this is supported by our design. Fur-
thermore, we also assume a simplified cost model, where we only consider a one-
dimensional budget (as in Definition 4.11). Furthermore, some differences exist
regarding the cost of queries to Table 2. Queries with differential privacy always
consume as budget ε, or else (no DP in the query) the entire budget of a stream if
the query includes an aggregation over people, or otherwise (no DP, no aggrega-
tion over people) just 1 budget unit. Finally, no external API is available for in- or
output, save for two exceptions: User generation (or input, if the data is not ran-
domly generated) is implemented by calling a function from an external module,
which can be replaced as needed. Additionally, results from the ILP solution and
several statistics about program performance can be written to a file.
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6 Evaluation
In the evaluation, we aim to answer the following three questions:

Q1: What advantages in terms of profits do we gain by using the ILP approach
compared to the heuristic baseline, i.e., how much better are the assign-
ments?

Q2: How scalable are the two approaches in terms of both runtime and memory?

Q3: What are the important factors that influence the runtime of the privacy
planner?

6.1 Experimental Setup
We obtained all benchmarks by running our implementation using AWS Elastic
Compute Cloud (EC2) on a z1d.2xlarge instance running Ubuntu Server 20.04
LTS. We run our privacy planner as a service and used Ansible to orchestrate the
overall experiments.

Towards creating the benchmarks, as described in Section 4.1 and Section 4, we
need a data schema, a set of privacy options and privacy policies, a set of users
with according metadata and privacy policies, and a set of Queries. Since systems
with user-centric privacy are not yet deployed in any significant setting, we care-
fully construct an application that includes very different types of queries, such
that we have multiple interesting tradeoffs.

Finally, we passed a few parameters to Gurobi to modify its standard behavior.
First, Gurobi allows setting a parameter that controls how far away an output
solution is from optimality at most. We set this parameter to 0.05, meaning that
any solution Gurobi found was at most 5% worse than the optimal solution for
the input ILP. Setting this parameter even lower could mean finding an even better
solution at the cost of increased runtime. In addition, we set Gurobi to focus on
finding a feasible solution quickly, instead of trying to prove the optimality of
already found solutions, which seemed to work well for our problem instance (see
below). Finally, we arbitrarily set a time limit of 2.8 hours for the optimization,
though this limit was never reached for our experiments (which involved up to one
million users).

6.2 Problem Instance
The data schema consists of just a single value stream (heart rate) and two meta-
data streams (age and area). Each user belongs to one of five age groups and one
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of seven areas. Each user was randomly assigned an age group and an area based
on the real data from Switzerland. Table 4 contains the specific numbers used
towards creating this probability distribution. More information is included in the
appendix Section A.1.

We include seven privacy options that include transformations such as differen-
tial privacy, bucketing, aggregation over time and/or aggregation over people (see
Section A.1). From these, we define seven privacy policies (see Section A.1),
which are roughly ordered according to which level of privacy they provide (from
no access for the provider over only DP to full access for the provider). As per
the assumptions made in Section 5, metadata is accessible without any restrictions
for all privacy policies. For this evaluation, each user is assigned a privacy policy
uniformly at random, independent of the metadata assignment.

Finally, in Table 3, we give an overview of the queries used in our benchmark.
More information can be found in Section A.1 in the appendix. For the queries
without DP, we assigned very high profits to a small number of transformation
chains, medium profits to a bigger number of transformation chains, and low prof-
its to many more transformation chains. For queries with DP, we just assigned low
profits to a large number of transformation chains. The idea is that we want a few
transformation chains of every query without DP to do certain analyses that de-
pend on these queries. Suppose we have a lot of users available. In that case, it is
no problem to run at least a small number of transformation chains of every query,
so we do not have a particular preference anymore. Certainly, we do not want to
leave data unused.
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QUERY QUERY DESCRIPTION HAS DP
Q1 Bucketed heart rate of users over 65 that live

in the Zürich area and are at least 65 years
old

�

Q2 Bucketed heart rate of users that live in the
Ticino area

�

Q3.1 Hourly aggregations (sum, count and vari-
ance) of heart rate over 100 users aged at
least 65 years

�

Q3.2 Hourly aggregations (sum, count and vari-
ance) of heart rate over 100 users aged be-
tween 40 and 64

�

Q3.3 Hourly aggregations (sum, count and vari-
ance) of heart rate over 100 users aged be-
tween 20 and 39

�

Q3.4 Hourly aggregations (sum, count and vari-
ance) of heart rate over 100 users aged at
most 19 years

�

Q4.1 Daily aggregations (sum, count and vari-
ance) of heart rates over 100 users

�X

Q4.2 Weekly aggregations (sum, count and vari-
ance) of heart rates over 100 users

�X

Table 3: An overview of queries used for our microbenchmark

We chose this specific problem instance setup as the result of two main criteria.
First, we wanted to include a range of common privacy transformations, both in
the query and in privacy options and policies, to approximate what a problem
instance could look like in an actual deployment. Second, we wanted to create
a scenario featuring multiple difficult tradeoffs, as would be likely in real-world
deployments where multiple actors want to run all kinds of analyses on data, but
the privacy budget is too limited to fulfill all requests. In such a scenario, privacy
management is the deciding factor for performance (in terms of profit), which
is exactly what we want to evaluate. If our approaches perform well in such a
demanding scenario, it is plausible that they will also perform well in less chal-
lenging circumstances.
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6.3 Methodology
In general, for different parameters, we measured the runtime of (different parts
of) our implementation, memory consumption, and profits of both the heuristic
approach and the ILP approach.

We repeat the run for each parameter configuration five times; report mean values
and the standard error of the mean. The only exception is memory consumption,
where we instead plot the maximum amount of memory observed in any of the
five repetitions, i.e., the observed worst case.

Any timing information was obtained using the ”time” module of python [30].
Profit measurements and the number of variables and constraints are directly avail-
able as a result of our implementation. We measure memory at a fixed interval dur-
ing the program’s runtime, using the ”systemctl” command available in Ubuntu
Server 20.04 LTS.

6.4 Benchmarks
Question 1 (What advantages in terms of profits do we gain by using the ILP
approach compared to the heuristic baseline, i.e., how much better are the assign-
ments?)

In Figure 6.1a, we show which percentage of profit the heuristic algorithm achieved
compared to the ILP approach, as we vary the number of users. In Figure 6.1b, we
show the total profit when we vary the number of users (using a log-log scale). For
212 or fewer users, the heuristic and the ILP approach result in almost the same
profit. For more users, the profit ratio continuously gets larger, until for 220 users,
the ILP result improves the profit over the heuristic baseline by a factor of almost
2.

The experimental results show that for a small number of users, the ILP cannot
significantly improve the profit over the heuristic approach. However, with in-
creasing numbers of users, there is more room for the ILP to improve the result
over the heuristic baseline.

Question 2 (How scalable are the two approaches in terms of both runtime and
memory?)

We start with addressing memory usage. In Figure 6.2, we plot the maximum
memory consumption when we vary the number of users. Figure 6.2a uses a linear
scale, while Figure 6.2b has a log-log scale. We can see that the ILP approach
always consumes more memory no matter the number of users. For 100K users
the ratio is 6.8, for 500K users 8.4, and for one million users 8.2.
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Figure 6.1: The profits of heuristic and ILP approaches compared for different
numbers of users.
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Figure 6.2: The maximum memory requirements of our ILP and heuristic ap-
proaches compared.

However, both approaches’ memory consumption scales roughly linearly in the
number of users. This behavior does not come as a surprise: since all python
data structures, as well as the size of the ILP model (number of variables and
constraints, see Figure 6.3) scale linearly with the number of users, the memory
consumption of the whole program should as well. Due to this linear scaling,
we can therefore consider both approaches scalable to larger deployments, yet the
ILP still uses considerably more memory.

After looking at the memory consumption, we now consider runtime. Initially,
it is much less clear how the runtime scales with the size of the problem for our
ILP approach. It is well-known that integer linear programs can solve NP-hard
problems and run exponentially in the worst case. However, for many practical
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Figure 6.3: The number of variables and constraints of the ILP depending on the
number of users.

problem instances, an (approximately) optimal solution can be found quickly with
Gurobi or other commercial ILP solvers.

In Figure 6.4, we show the runtime when we vary the number of users, again using
a linear scale (Figure 6.4a) and a log-log scale (Figure 6.2b). We can see that no
matter the number of users, the ILP approach always takes longer. For 100K users
the ratio is 6.5, for 500K users 6.4, and for one million users 6.3.

Nevertheless, as for memory, both approaches scale linearly. Note that the trans-
formation manager is designed to run offline workloads, i.e., should not be placed
on the critical path. With this in mind, both approaches are certainly feasible also
in terms of runtime. That the heuristic algorithm scales linearly with the number
of users is clear from the description in Section 4.3. However, as described above,
it is initially unclear why the ILP approach also scales linearly with the number
of users. To address this, we next want to look into what parts of the approaches
contribute the most to runtime.

Question 3 (What are the important factors that influence the runtime of the pri-
vacy planner?)

To answer this question, we measure the runtime of individual components of the
prototype. In addition, we perform a small ablation study to look at the influence
of different types of queries.

In Figure 6.5 we present the runtime of individual components for both the ILP
(Figure 6.5a) and heuristic approach (Figure 6.5b). In the ILP approach, adding
constraints and running the optimization in Gurobi takes most of the total runtime
(81% for 500K users). Interestingly, Gurobi requires longer for adding the con-
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Figure 6.4: The runtime of our ILP and heuristic approaches compared.

straints compared to optimizing the ILP. More than half of the total runtime of the
ILP approach (56% for 500K users) comes only from adding constraints.

As we have already referred to earlier, Figure 6.3 shows the number of constraints,
which scale linearly with the number of users. With 500K users, we have (on av-
erage) 2.9 million variables and 4.5 million constraints, and double these amounts
for one million users.

That adding constraints is a main bottleneck for the ILP approach has several
important reasons:

1. We think our type of ILP problem is a comparatively easy one for Gurobi.
We know that in the worst case, the optimization could scale exponentially.
Seeing that the time needed for optimization is small, even for one million
users, we do not think there is any exponential scaling of practical impor-
tance, reinforcing the idea of a not too difficult problem instance for Gurobi.

2. While the optimizer makes use of multiple threads, adding constraints is
single-threaded. Combined with the fact that the z1d.2xlarge instances used
for this evaluation feature eight vCPU’s, it seems plausible that this signifi-
cantly affected the relative runtime of optimization and adding constraints.

3. Gurobi already builds up some internal data structures when constraints
(and variables) are added, increasing the runtime of adding constraints while
favoring the optimization runtime.

In the heuristic approach, there are only two components. First, we compute the
compatibility between privacy policies and (virtual) queries, and then we run the
heuristic matching as described in Section 4.3. Figure 6.5b shows that, for 500K
users, 39% of the total runtime is used for computing the compatibility, while
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Figure 6.5: What the runtime proportions of different elements of the two ap-
proaches are. See Section 5 for an overview over the different components from a
functional perspective.

the remaining 61% is used for greedily assigning users to queries. Since we are
comparing every user and virtual query, it is no surprise that the compatibility part
takes some time as well. Caching the compatibility between privacy policies (of
which there are a lot less than users) and queries undoubtedly helps in this regard;
otherwise, this part might even dominate runtime.

Overall, the measurements reveal nothing surprising for our heuristic approach,
but for the ILP approach, it is clear that adding constraints to Gurobi is a signifi-
cant bottleneck. This fact leaves room for optimizations in future work.

Query Ablation Study To study the impact of different types of queries (Ta-
ble 3), we perform an ablation study. In Figure 6.6 we show the profit (Fig-
ure 6.6a) and runtime (Figure 6.6b) when we remove individual queries or a
group of queries with similar properties (e.g., all queries with differential pri-
vacy). Removing Queries seems to have significant effects on profit, depending
on which query was removed. When we have either exclusively Queries with
DP or no Queries with DP, the heuristic algorithm can find (almost) optimal so-
lutions, which are not further improved by our ILP approach. If we have only
Queries with DP left, it is no big surprise that the problem changes significantly
since we then only have two queries left (see Table 3). In addition, each user that
could be assigned to Q4.1 can also be assigned to Q4.2 (for less profit). Such a
setup is optimal for our heuristic approach, which explains why the ILP approach
does not net any benefit here.

On the other hand, it is initially unclear why the heuristic approach finds near-
optimal solutions if we only have queries without differential privacy. One factor
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Figure 6.6: The impact of removing single or multiple queries from our evaluation
problem instance.

might be that Queries 3.1 - 3.4 are non-overlapping, in the sense that a user which
is part of query 3.i cannot be part of query 3.j for i 6= j. Query 1 also only
overlaps with query 3.1. Only query 2 overlaps with all Queries 3.k. Since the
queries, therefore, almost ”divide up” the available users without much overlap,
the heuristic algorithm and the ILP approach do not have much choice where to
assign users, which is why even the greedy heuristic approach gets near-optimal
results.

The experimental results suggest that in more complex real-world deployments
with more competition for users, the ILP approach could bring an essential ad-
vantage. However, this has to be investigated in more depth in future work.

In terms of runtime, removing queries has primarily predictable effects. That the
runtime is drastically shorter if we only have queries with differential privacy is
not surprising, again considering only two such queries in our example set of
queries exist. However, there is one exception: Removing one of the queries 3.i
seems to increase the runtime of the ILP approach. However, we know that adding
more constraints can make an ILP easier to solve in some cases. As a result, it
is hard to predict what effect removing some constraints (as is the case when
removing query 3.i) has on runtime for the ILP solver and our ILP approach as a
whole.

Start with initial Solution In Gurobi, we can set an initial feasible solution as
a starting point for the optimization. In the prototype, we use the assignment from
the heuristic approach as a starting point for the ILP.
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Figure 6.7: Runtime of our ILP approach where an initial solution obtained from
the heuristic approach was set, compared to the runtime with no initial solution
set, both with one million users.

According to the Gurobi documentation, ”it can be helpful for the modeler to
provide a feasible solution along with the model itself”, for problem instances
where ”the MIP solver is slow in finding an initial feasible solution” [16].

Recall that we run the ILP optimization until we find a solution within 5% to the
optimal solution. Therefore, starting with a good initial solution promises to find
a near-optimal solution more quickly, resulting in a better runtime.

In Figure 6.7, we compare the runtime with and without the heuristic start. We
can see that the total runtime of the ILP approach is lower if the optimizations
start with this heuristic solution due to the time needed to input the solution into
Gurobi. Consequently, the experimental data suggest that receiving the heuristic
solution does not improve the runtime of our heuristic approach.

However, starting with the heuristic solution is still helpful because it guarantees
that the ILP solution is always at least as good as the heuristic solution. This situ-
ation can happen in rare circumstances since Gurobi stops after finding a solution
at most 5% away from an optimal one, while the heuristic algorithm might find
an optimal solution. Another way to tackle this could be to decrease tolerance
for Gurobi, such that it only stops after finding a solution that is at most, e.g.,
0.0001 = 0.1% (default value) away from an optimal solution. However, that
would likely increase runtime more, though with the added benefit of leading to
better solutions when the heuristic solution is far from optimal.
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In conclusion, we identified many vital factors that influence the runtime of the
privacy planner. First, of course, the size of the problem (number of users and
number of queries) is an essential factor. Second, the exact problem instance
(e.g., which queries are specified) can have substantial impacts. Third, we identi-
fied that adding constraints is the main bottleneck for our ILP approach. Finally,
forwarding the heuristic solution to Gurobi does not improve runtime in our ex-
periments.
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7 Conclusion
Recent trends towards more collection of sensitive data and a push for increased
privacy protections are likely to continue for the foreseeable future. While a flurry
of new privacy systems is being developed, new challenges are also arising.

In this thesis, we address the privacy management challenges that arise in user-
centric privacy systems that deal with a heterogeneous set of privacy policies and a
diverse set of queries by the provider. We present a solution that finds assignments
of users to queries that conform to all applicable privacy policies. Either using our
fast, heuristic approach or our integer linear program (ILP) approach, which can
find near-optimal solutions (with a configurable bound) at the cost of increased
runtime. By executing queries according to this assignment, data can then be
transformed into a policy-compliant view, on which unrestricted analyses can be
run.

We showed that both of these solutions are feasible in offline, batch-oriented set-
tings, and that they scale reasonably well (linear scaling in runtime and memory
regarding the number of users). While the ILP approach needs significantly more
computing resources, we show that its solutions can significantly outperform the
heuristic algorithm (almost double the profits for one million users). Still, in sit-
uations where there is little competition for users’ data (i.e., most users are only
compatible with a single query), the heuristic algorithm can achieve near-optimal
solutions.

This thesis addresses a broad challenge that arises in any user-centric privacy sys-
tem. Namely, how to manage a heterogeneous set of privacy policies such that the
generated value is maximized. By maximizing the value generated from data, the
cost in data utility from implementing more strict privacy protections decreases.
As effects on data utility are a primary concern when implementing privacy mea-
sures, we argue that our approach can help to increase adoption of any user-centric
privacy system making use of our approaches.

7.1 Future Work
While we addressed several challenges that come up concerning privacy man-
agement, many key issues remain. In the following, we state some of the most
important future research questions related to the research in this thesis.

• Implementing data transformations: We outlined (see Figure 4.1) that the
solutions found by our privacy planner can be used to compute a policy-
compliant view of data. However, implementing such data transforma-
tions was outside the scope of our thesis. Towards this end, future research
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could either implement such data transformations directly or integrate our
approaches into already existing end-to-end data privacy systems (such as
Zeph [4]).

• Mapping Privacy Policies: As outlined in Section 4.2 (see Figure 4.2), we
assume a system where users set valid privacy preferences across applica-
tions and that these are then translated to privacy policies by experts. How-
ever, we did not detail how such privacy preferences could look, what rules
could govern the translation into privacy policies, and if such translation
could be (partially) automatic. Research into such problems is essential not
only to this thesis but for the whole field of data privacy. We argue that it
is even a prerequisite for more widespread adoption of user-centric privacy
systems.
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A Appendix

A.1 Evaluation Details
In the following, we will detail the full example including all parameters that was
used in Section 6: Evaluation to assess the performance of our prototype. We start
by showing the data schema, privacy options and privacy policies that were part
of this example. Then, we detail the set of queries and how users were generated.

Data Schema

EventStream1

- name: ”heartRate”
type: long
range: [0, 240]
description: heart rate in beats per minute

UserLevelMetadata

- name: ”age”
type: enum
symbols: [”0-19”, ”20-39”, ”40-64”, ”65-79”, ”80+”]
description: Age classes in years as used by the Federal Statistical Office
[12]

- name: ”residentialRegion”
type: enum
symbols: [”Lake Geneva Region”, ”Espace Mittelland”, ”Northwestern Switzer-
land”, ”Zurich”, ”Eastern Switzerland”, ”Central Switzerland”, ”Ticino”]
description: regions for analysis purposes in Switzerland as used by the
Federal Statistical Office [11]

Privacy Options

- name: ”Private”
chain: ”Deletion”
transformations: [(”RedField”, {})]
description: user-level differential privacy with ε = 2 and δ = 0, support-
ing the release of differentially private aggregations sum, count and vari-
ance. There is no minimum requirement of people, although if one does an
aggregation with only a few people noise will dominate.
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- name: ”Differential Privacy”
chain: ”Private Sharing”
transformations: [
(”TimeRes”, {86400, [”sum”,”count”,”variance”]}),
(”PertDP”, {”user-level”, 2, 0,”laplace”})
]
description: user-level differential privacy with ε = 2 and δ = 0, support-
ing the release of differentially private aggregations sum, count and vari-
ance. There is no minimum requirement of people, although if one does an
aggregation with only a few people noise will dominate.

- name: ”Heart Rate Buckets”
chain: ”Private Sharing”
transformations: [
(”RangeRed”, {60, 100}),
(”Bucket”, [{0, 5}, {5, 10}, {10, 20}, {20, 40}, {40, 60}, {100, 120},
{120, 140}, {140, 160}, {160, 180}, {180, 200}, {200, 220}, {220, 240}])
]
description: Bucketed Heart Rate values in beats per minute (bpm) with-
out resting heart rate (ca. 60-100 bpm in adults according to the American
Heart Association [2])

- name: ”Weekly Aggregates”
chain: ”Private Sharing”
transformations: [(”TimeRes”, 604800)]
description: Only share weekly aggregates, with no pop requirements

- name: ”1000 People Hourly”
chain: ”Private Sharing”
transformations: [
(”TimeRes”, {3600, [”sum”,”count”,”variance”]}),
(”PopRes”, {1000, [”sum”,”count”,”variance”]}),
]
description: Aggregations sum, count and variance available in aggregation
with 1000 ppl, with a min. time resolutions of one hour
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- name: ”100 People Daily”
chain: ”Private Sharing”
transformations: [
(”TimeRes”, {86400, [”sum”,”count”,”variance”]}),
(”PopRes”, {100, [”sum”,”count”,”variance”]}),
]
description: Aggregations sum, count and variance available in aggregation
with 1000 ppl, with a min. time resolutions of one day

- name: ”Public”
chain: ”Public”
transformations: [(UnmodRelease, )]
description: No restrictions on data usage

Privacy Policies

• policy 1
EventStream1

- valueStreams: ”heartRate”
privacyOptions: [”Private”]

• policy 2
EventStream1

- valueStreams: ”heartRate”
privacyOptions: [”Differential Privacy”]

• policy 3
EventStream1

- valueStreams: ”heartRate”
privacyOptions: [”Differential Privacy”, ”1000 People Hourly”]

• policy 4
EventStream1

- valueStreams: ”heartRate”
privacyOptions: [”Differential Privacy”, ”100 People Daily”]

• policy 5
EventStream1

- valueStreams: ”heartRate”
privacyOptions: [”Differential Privacy”, ”100 People Daily”, ”1000
People Hourly”, ”Weekly Aggregates”]
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• policy 6
EventStream1

- valueStreams: ”heartRate”
privacyOptions: [”Differential Privacy”, ”100 People Daily”, ”1000
People Hourly”, ”Weekly Aggregates”, ”Heart Rate Buckets”]

• policy 7
EventStream1

- valueStreams: ”heartRate”
privacyOptions: [”Public”]

For all policies we also assume:

UserLevelMetadata

- valueStreams: ”age”
privacyOptions: [”Public”]

- valueStreams: ”residentialRegion”
privacyOptions: [”Public”]

Queries

- name: ”Zurich over 65 bucketed”
inputSchema: ”heartRate”
chain: ”Private Sharing”
transformations: [
(”RangeRed”, {60, 100}),
(”Bucket”, [{0, 5}, {5, 10}, {10, 20}, {20, 40}, {40, 60}, {100, 120},
{120, 140}, {140, 160}, {160, 180}, {180, 200}, {200, 220}, {220, 240}])
conditions: residentialRegion==”Zurich” && age>= 65
numberAndProfit [(100, 100), (200, 50), (200000, 10)]

- name: ”Ticino bucketed”
inputSchema: ”heartRate”
chain: ”Private Sharing”
transformations: [
(”RangeRed”, {60, 100}),
(”Bucket”, [{0, 5}, {5, 10}, {10, 20}, {20, 40}, {40, 60}, {100, 120},
{120, 140}, {140, 160}, {160, 180}, {180, 200}, {200, 220}, {220, 240}])
conditions: residentialRegion==”Ticino”
numberAndProfit [(100, 100), (200, 50), (200000, 10)]
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- name: ”Hourly Aggregated heart rates 65 or older”
inputSchema: ”heartRate”
chain: ”Private Sharing”
transformations: [(”TimeRes”, {3600, [”sum”,”count”,”variance”]}),
(”PopRes”, {100, [”sum”,”count”,”variance”]})]
conditions: age >= 65
numberAndProfit: [(10, 9000), (200, 5000), (200000, 1000)]

- name: ”Hourly Aggregated heart rates between 40-64”
inputSchema: ”heartRate”
chain: ”Private Sharing”
transformations: [(”TimeRes”, {3600, [”sum”,”count”,”variance”]}),
(”PopRes”, {100, [”sum”,”count”,”variance”]})]
conditions: age >= 40 && age <= 64
numberAndProfit: [(10, 9000), (200, 5000), (200000, 1000)]

- name: ”Hourly Aggregated heart rates between 20-39”
inputSchema: ”heartRate”
chain: ”Private Sharing”
transformations: [(”TimeRes”, {3600, [”sum”,”count”,”variance”]}),
(”PopRes”, {100, [”sum”,”count”,”variance”]})]
conditions: age >= 20 && age <= 39
numberAndProfit: [(10, 9000), (200, 5000), (200000, 1000)]

- name: ”Hourly Aggregated heart rates 19 or younger”
inputSchema: ”heartRate”
chain: ”Private Sharing”
transformations: [(”TimeRes”, {3600, [”sum”,”count”,”variance”]}),
(”PopRes”, {100, [”sum”,”count”,”variance”]})]
conditions: age <= 19
numberAndProfit: [(10, 9000), (200, 5000), (200000, 1000)]
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- name: ”Daily Differentially Private”
inputSchema: ”heartRate”
chain: ”Private Sharing”
transformations: [
(”TimeRes”, {86400, [”sum”,”count”,”variance”]}),
(”PopRes”, {100, [”sum”,”count”,”variance”]}),
(”PertDP”, {”user-level”, 0.01, 0, 1, 0,”laplace”})
]
numberAndProfit: [(100000, 3000)]

- name: ”Weekly Differentially Private”
inputSchema: ”heartRate”
chain: ”Private Sharing”
transformations: [
(”TimeRes”, {604800, [”sum”,”count”,”variance”]}),
(”PopRes”, {100, [”sum”,”count”,”variance”]}),
(”PertDP”, {”user-level”, 0.01, 0, 0.6, 0,”laplace”})
]
numberAndProfit: [(100000, 1000)]

User Distribution

In this section, we detail how users where assigned. As mentioned in Section 6.1,
users are assigned privacy policies uniformly at random from the ones available in
Section A.1. Metadata is assigned independently from privacy policies, according
to the distribution detailed in Table 4
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Region 0-19 20-39 40-64 65-79 80+
Lake
Geneva
Region

350184 451997 567605 202793 82172

Espace
Mittelland

373779 481200 656842 270362 104401

North-
western
Switzer-
land

228236 301758 415191 161886 64086

Zurich 304095 441221 531563 186909 75487
Eastern
Switzer-
land

234375 307628 413727 166169 61914

Central
Switzer-
land

163404 213605 293050 108201 40702

Ticino 63125 77117 130531 55810 24908

Table 4: Distribution of age and residential region in Switzerland according to
data from the Swiss Federal Statistical Office [12]
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