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Abstract

Collaborative machine learning paradigms based on secure multi-party computation
have emerged as a compelling alternative for sensitive applications in the last few
years. These paradigms promise to unlock the potential of important data silos
that are currently hard to access and compute across due to privacy concerns and
regulatory policies (e.g., health and financial sectors). Although collaborative
machine learning provides many privacy benefits, it makes sacrifices in terms of
robustness. It opens the learning process to the possibility of an active malicious
participant who can covertly influence the model’s behavior. As these systems are
being deployed for a range of sensitive applications, their robustness is increasingly
important. To date, no compelling solution exists that fully addresses the robustness
of secure collaborative learning paradigms. As the robustness of these learning
paradigms remains an open challenge, it is necessary to augment these systems
with measures that strengthen their reliability at deployment time. This paper
describes our efforts in developing privacy-preserving auditing mechanisms for
secure collaborative learning. We focus on audits that allow tracing the source of
integrity issues back to the responsible party, providing a technical path toward
accountability in these systems.

1 Introduction

Machine learning algorithms continue to achieve remarkable success in a wide range of applications.
This success, however, has been limited to domains and sectors where suitable training data is
accessible. However, many of today’s societally important questions require sensitive data that is
hard to access and share due to privacy concerns, conflicting business interests, and/or regulatory
restrictions [13, 14]. Collaborative Learning [38, 12, 28, 34, 39, 24] (CL) has recently emerged as a
compelling solution for this setting. CL enables organizations to train a machine learning model on
joint datasets without revealing their sensitive data. To achieve this, these systems employ crypto-
graphic techniques such as secure Multi-Party Computation (MPC) that ensure the confidentiality of
participants’ input data and reveal only the final trained model. Although they provide many privacy
benefits, these systems exacerbate existing ML robustness issues: they open the training process
to potentially malicious parties which can covertly introduce maliciously crafted data in order to
influence the model behavior. While data poisoning is not a new challenge, the privacy-protections of
this setting enable a class of covert attacks and exclude many of the existing countermeasures.

Currently, we lack comprehensive solutions to these integrity issues in this setting; proposed defenses
are repeatedly being broken [3, 10, 11, 26, 8] and more powerful attacks continue to surface [31, 37].
There is a growing realization in the community that we need to go beyond attack prevention and
think of broader measures to complement existing defenses to minimize the consequences of these
attacks in practical deployments [38, 23, 32]. A key complementary technique to existing defenses is
auditing for accountability, allowing the model provider to identify the source of unwanted behavior.
For systems trained on sensitive data, these measures need to be designed with caution to preserve
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Figure 1: Privacy-preserving auditing scenario, identifying the source of a suspicious event.

the privacy of honest participants. In addition, they also need to avoid implicating honest clients,
especially if the unwanted behavior is not actually caused by an attack. In this work, we present a
novel privacy-preserving auditing technique to enable accountability in secure collaborative learning
systems.

Contributions: In this paper, we augment secure CL with privacy-preserving audits for account-
ability. We first define auditing in secure collaborative learning settings and introduce an extensible
framework for auditing; we describe the workflow of the framework and describe key cryptographic
and algorithmic building blocks. Next, we propose an efficient auditing function that traces back
abnormal behavior (i.e., misclassifications) to the responsible party. Our audit function uses approx-
imate unlearning to identify each party’s influence on a certain inference. Our evaluation shows
that we can achieve high recall while guaranteeing a precision of at least 0.99 across a wide range
of attacks and datasets. We show that we can efficiently extend secure collaborative learning with
effective privacy-preserving audits without harming the privacy of benign participants.

2 Cryptographic Auditing

We begin by defining the scenario for privacy-preserving auditing, discuss key requirements, and
describe our threat model. Afterwards, we present our cryptographic auditing protocol and concrete
instantiations of the auditing function for identifying the source of data poisoning attacks.

2.1 Overview

Scenario. The standard CL setting features N parties training an ML model (classifier)M on their
joint dataset D = ∪Ni=1Di, using MPC to ensure the confidentiality of the input data. Cryptographic
auditing occurs after the resulting model is deployed when suspicious behavior is detected, e.g., a
downstream incident tracing back to a suspicious model output ỹ for an input x̃ (a misclassification
event). See Figure 1 for an overview of the scenario. The parties then engage in a cryptographic
auditing protocol P initiated by the model operator. The privacy-preserving protocol takes as input
the modelM, the misclassification event (x̃,ỹ) and the parties’ original training data. The parties
execute an auditing function F that outputs the parties { i | party i is responsible } that provided
poisoned data leading to the misclassification event (x̃,ỹ), or ⊥ if no malicious activity is identified.

Key Requirements. Auditing on sensitive data needs to fulfill several key requirements: (i) Privacy-
Preserving. Auditing must not weaken the strong privacy guarantees of collaborative learning.
Therefore, auditing must not reveal the parties’ sensitive input data and must especially not impact
the privacy of honest parties. Parties should learn nothing from executing the protocol P beyond the
output of the auditing function F . In order to prevent harm to honest parties, the auditing function
must have a low false-positive rate, since the consequences of being wrongly flagged as malicious
might have implications for the privacy of a party. (ii) Efficiency. To be of practical use, the audit
function must run efficiently on large-scale datasets. Specifically, running the auditing protocol
cannot assume computation and bandwidth resources greater than needed for the original secure
collaborative training. Since secure collaborative training is expensive due to the overhead of the
employed secure computation techniques, the auditing should ideally be significantly cheaper.

Threat Model. We consider an adversary that compromises up to half of the parties by poisoning
their dataset. Note that the guarantees of maliciously secure collaborative learning prevent attacks
beyond poisoning and guarantee the confidentially of the input data. The adversary can modify any
portion of the datasets D̃i ⊆ Di of these parties, up to their full dataset, with the goal of making
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the model misbehave at inference time. Note that we assume the adversary is aware of the auditing
system in place and can actively attempt to fool the auditing algorithm. We employ maliciously
secure MPC with guaranteed output delivery in an honest-majority setting [18, 15] for our auditing
protocol, inheriting the assumptions and guarantees of these protocols. We rely on guaranteed output
delivery to prevent the adversary from aborting the auditing protocol without being detected.

2.2 Cryptographic Auditing Protocol

The model operator triggers the cryptographic auditing protocol after detecting a suspicious mis-
classification event ỹ ← M(x̃). All the parties involved in the original training then engage in a
privacy-preserving interactive MPC protocol to compute the auditing function F . We require the
party to commit to their data prior to training using cryptographic commitments [7, 29] and check
the private input data provided to the auditing protocol against the commitments provided in the
collaborative learning protocol. This ensures that the private input data provided when computing
the audit function is the same as the data used during training and prevents malicious parties from
altering or changing their data during the audit phase.

Towards this, we augment the secure training computation with a preprocessing step V that checks
that the input data Di for each party i corresponds to the commitments ci. The training computation
proceeds only if these data consistency checks succeed. A straightforward implementation of this
would require each party to broadcast their commitments to all other parties before training. However,
if an MPC protocol that supports authenticated secret shares [16, 5] is used to instantiate both
training and auditing, this preprocessing step can be omitted. During the auditing phase, we use the
same preprocessing step V to verify that parties’ commitments correspond to each party’s original
training data before evaluating the auditing function F . Any party which provides inconsistent data
is automatically flagged as malicious.

2.3 Auditing Function

We now present the design of an auditing function F to attribute responsibility for a misclassification
event (x̃, ỹ) to the responsible parties. The core of our technique is the computation of an influence
score Si for each party, where compromised parties will have a high influence score on poisoned
data samples. However, a high influence score does not necessarily indicate maliciousness, as a
misclassification event can arise even when no poisoning attack took place. In order to avoid harming
benign parties, it is essential to distinguish these scenarios. We do so by considering the distribution
of the influence scores: if a misclassification event was significantly influenced by a small subset of
outlier parties, we assume a data poisoning attack. Conversely, if the influence is distributed evenly
across all parties, we consider an attack less likely.

Thus, we want to identify which party’s influence scores differ significantly from the overall pop-
ulation of scores. For each score, we compute the Median-Absolute-Deviation (MAD), a robust 1

measure of dispersion. We flag parties with a MAD score higher than a threshold τ as malicious. This
threshold represents the maximum relative influence a party can have on a prediction before they are
deemed suspicious and depends on the task, dataset and distribution shift between parties. Optimized
values for τ could be derived from an analysis of a public (non-malicious) test set. However, we
leave this to future work and choose conservative estimates for τ in our evaluation. In the following,
we first present a baseline instantiation of an influence score using k-Nearest-Neighbors (kNN) and
then our more sophisticated design using leave-out models.

k-Nearest-Neighbors. Using kNN, we can identify the k training samples closest to the prediction
sample in the model’s latent space. The influence score is then determined by the number of those
k points contributed by a party. Formally, let Γ be the set of the k nearest neighbors to x̃, then
Si ← count (Γ ∩Di). This is a simple and effective influence score if we assume that malicious
training samples have small l2-distances from x̃ in latent space. However, as we show in our
evaluation, this assumption does not necessarily hold for attacks in practice.

Leave-out Models. The key idea for our design is that if a misclassification event was (at least
partially) the result of poisoned data provided by a party; removing the data of that malicious party
will result in the absence (or weakening) of the attack at inference time. We could train a leave-out

1Median-Absolute-Deviation is robust for distributions with up to 50% outliers, unlike its mean-based variant.
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SINGLE ATTACKER MULTI ATTACKER
kNN Unlearning kNN Unlearning

pre rec pre rec pre rec pre rec

BN CIFAR-10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
BN Camelyon17 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
EM Ember 0.98 0.91 1.00 1.00 1.00 0.88 1.00 1.00
BP CIFAR-10 0.79 0.97 1.00 1.00 1.00 0.58 1.00 0.53
BP TinyImageNet 0.94 1.00 1.00 1.00 1.00 0.99 1.00 1.00
WIB CIFAR-10 0.92 0.32 1.00 0.74 1.00 0.14 1.00 0.13
1BN: BadNets [20] EM: Ember Malware [31] BP: Bullseye Polytope [1] WIB: Witches’ Brew [19]

Table 1: Performance of the kNN- and unlearning-based auditing functions for one and two attackers.

model Mi for each party, using the same dataset but leaving out party i’s dataset. Given these,
we can compute the influence score as the loss of each model on the misclassification event, i.e.,
Si ← ℓ(Mi(x̃), ỹ). Note that, since theMi do not depend on x̃ or ỹ, we can use the same set of
leave-out models to handle auditing requests for different events.

However, retraining these leave-out models naively is prohibitively expensive, as it requires
training N additional models, each incurring the same costs as the original secure collabora-
tive learning process. Therefore, our approach instead relies on techniques for unlearning a
party’s data points from the full model [9, 21, 6]. While certified unlearning approaches pro-
vide formal guarantees on their equivalence to leave-out models, these techniques currently
do not scale well to scenarios like ours, where large amounts of data points must be re-
moved [6, 36]. Instead, we use an efficient unlearning technique [32] that can scale to the de-
mands of our setting. Specifically, Unl(M, Di, D) applies first-order updates towards the objective
minθ

(∑
(x,y)∈D\Di

ℓ (M(x), y) +
∑

(x,y)∈Di
ℓ (M(x),EQUAL)

)
, where ℓ is the cross-entropy

loss function and EQUAL is defined as the uniform probability vector, representing the output of the
model when it is uncertain about its prediction [35, 27].

Our approach requires only a small number of unlearning steps, which can be orders of magnitude
more efficient than full retraining. While the concrete number of steps required is task-dependent,
in practice, our unlearning approach requires at most four epochs of training in settings where full
training requires up to 200 epochs. Note that there are many other potential unlearning objectives,
and a systematic investigation into optimal objectives for this task would be interesting future work.
For brevity, we next focus our evaluation on the effectiveness of our auditing functions and omit a
detailed performance evaluation of the MPC implementations.

3 Experiments

We evaluate the effectiveness and performance of cryptographic auditing on a wide range of attacks
and datasets, where up to 40% of the client datasets are poisoned. We use the recommended
configurations and settings from the data poisoning benchmark in [30] to evaluate auditing on the
state-of-the-art Bullseye Polytope [1] (BP) and Witches’ Brew [19] (WIB) clean label attacks as well
as the dirty-label BadNets [20] (BN) attack. In addition, we also consider the clean-label Ember
Malware attack [31] (EM). In contrast to dirty-label attacks that can poison samples arbitrarily,
clean-label attacks rely on stealthy perturbations that are small enough to justify the original labels
when observed by domain experts. In BP, the adversary inserts samples of the target class with small
perturbations to form a polytope that traps the target inside the center of the samples’ convex hull. In
Witches’ Brew, the adversary perturbs samples of the target class such that they mimic the gradient of
the target labeled as the target class. We refer to Appendix §A for further details on the experiments.

We evaluate (i) the precision of identifying malicious clients from benign clients, and (ii) the recall of
identifying malicious clients, i.e., the fraction of malicious clients caught. We prioritize avoiding harm
from falsely implicating benign clients and therefore evaluate the auditing functions by comparing
recall scores at the highest possible precision. Both approaches also achieve a false-positive rate of at
most 1% on benign misclassifications, evaluated by random selection from the clean test set. We first
investigate settings with a single attacker, then show to what extent introducing multiple attackers

4



affects the results. Table 1 shows that the kNN-based baseline has a high precision (≥ 0.98) and
recall (≥ 0.91) for some attacks (BN, EM) but performs poorly for BP (low precision) and WIB
(low recall), which rely on fewer poisoned samples that often lie closer to benign data points. Our
unlearning-based approach generally performs significantly better, achieving high precision (1.0)
and recall (1.0) for all tasks except WIB, where it outperforms kNN but fails to identify a significant
number of malicious clients. In general, our approach can successfully detect most attacks with high
confidence and low false positive rate (< 1%) in the single attacker setting. In a setting with multiple
attackers, the individual influence score of each attacker is reduced, making it harder to distinguish
them. Table 1 shows that, while both approaches maintain high precision, we can observe an expected
degradation in performance for both the kNN and unlearning-based approach, e.g., further reducing
recall on WIB to 0.14 (kNN) and 0.13 (unlearning). This suggests investigating approaches to deal
with scenarios with multiple attackers as a prominent direction for future work.
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A Appendix

We discuss the experimental setup used in the evaluation. We first provide an overview of the attacks
and then provide details on the benchmark tasks.

A.1 Attacks

We begin with an overview of the poisoning attacks that we use to evaluate the effectiveness of
our auditing functions. We aim to adhere as much as possible to configurations used for evaluating
existing poisoning attacks. For the Bullseye Polytope and Witches’ Brew attacks, we use the default
configurations, i.e., model, dataset, training hyperparameters, and attack hyperparameters, as provided
by the benchmark of Schwarzschild et al. [30].

BadNets (BN). The BadNets [20] attack inserts a backdoor into an image classification model by
teaching it to classify any samples that contain a specific backdoor trigger. The attack creates poison
samples by applying the backdoor trigger to random benign samples and labeling these samples with
the target class, resulting in the behavior being learned by the model.

Bullseye Polytope (BP). The Bullseye Polytope attack [1] targets a single prediction image to be
misclassified as a target class by the model. The attacker selects images belonging to the target class
and adds small perturbations to form a polytope that traps the target sample inside the center of the
samples’ convex hull. Bullseye Polytope is most effective in the transfer learning setting [30] because
it works well when the attacker has access to a pretrained feature extractor used by the model.

Witches’ Brew (WIB). The Witches’ Brew [19] attack uses gradient matching, a technique to
perturb poison samples such that they mimic the gradient of the target sample labeled as the target
class. Unlike Bullseye Polytope, the Witches’ Brew attack also performs well in the from-scratch
training setting.

EMBER Malware (EM). The attack on the Ember malware classification dataset [2] uses model
explanation methods to find the most important features for being classified as benign software [31].
These features are used to create a trigger that is applied to benign software samples at training time.
The model then learns to classify samples with this trigger as benign software. At deployment time,
the model will classify malware containing the same trigger as benign.

A.2 Benchmark Tasks

We now briefly discuss each dataset, model, and important hyperparameters we use to evaluate our
auditing algorithm on different tasks. The benign and backdoor accuracies of the trained models
used in the evaluation are shown in Table 2. Some poisoning attacks are specifically designed for the
transfer-learning setting, so we differentiate between the transfer-learning and from-scratch training
settings. To ensure a fair comparison between both auditing functions, we choose the τ threshold
based on the best recall score at the highest possible precision. This methodology conforms with our
belief that a high precision of the auditing function is a crucial requirement. For the kNN baseline,
we experimented with various choices for k but saw this did not impact performance significantly,
ultimately choosing k = 25.

CIFAR-10. The CIFAR-10 dataset is an image classification dataset containing 50,000 training
and 10,000 testing images. The task is to classify 32-by-32 sized RGB images into ten classes. The
model is a ResNet-18 [22]. The combination of ResNet-18 and CIFAR-10 is commonly used in
the machine learning and security literature. We set τ to 9.0 for kNN and 10.6 for unlearning in
both the from-scratch and transfer-learning settings. For BadNets, we use an injection rate of 10%,
similar to the original setup, and evaluate 100 instances of the attack for each label, resulting in 1000
misclassification events. For the clean-label attacks, we use the 100 configurations provided by the
benchmark that inject 25 poisoned samples for Bullseye Polytope and 500 samples for Witches’ Brew.
We audit the successful attack instances, resulting in 36 misclassification events for Witches’ Brew
and 88 events for Bullseye Polytope.
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Attack Dataset Model Training Benign Acc. (%) Mal. Acc. (%)

BadNets Camelyon17 ResNet18 Scratch 96.29 100.00
BadNets CIFAR-10 ResNet18 Scratch 93.79 99.60
BP CIFAR-10 ResNet18 Transfer 69.63 88.00
Witches’ Brew CIFAR-10 ResNet18 Scratch 95.12 35.44
Ember Malware Ember EmberNN Scratch 99.05 97.34
BP TinyImageNet VGG16 Transfer 42.96 100.00

Table 2: Benign and malicious classification accuracy of models on the benchmark tasks.

TinyImageNet. TinyImageNet is an image classification dataset with 100,000 training images in 200
classes. The images are taken from the original ImageNet [17] dataset but downsized to a 64-by-64
resolution. We use the VGG-16 [33] convolutional neural network for this task. We evaluate the
Bullseye Polytope clean-label attack on TinyImageNet in the transfer learning setting, following the
benchmark setup where the adversary inserts 250 samples (0.5% injection rate) into the training set
consisting of the last 100 classes. We measure the performance of auditing on 100 misclassification
events in 100 models and set τ to 8.0 for kNN and 19.5 for unlearning.

EMBER Malware. EMBER [2] is a malware dataset containing samples of malware and benign
software. Each sample is a 2,351-dimensional feature vector extracted from Portable Executable (PE)
files for Windows OS. We include the EMBER task to test the performance for malware classification,
which is a realistic scenario of being a target of poisoning attacks. We use the EmberNN model and
its original training configuration from the Ember Malware poisoning attack [31]. We set τ to 9.0 for
kNN and 21.2 for unlearning and allow the attacker to inject 6000 samples (1.0% injection rate). We
audit 2000 misclassifications events of malware classified as benign software by the model as a result
of the modified features.

Camelyon17. Camelyon17 [4] is a tumor classification dataset collected by five hospitals. The
dataset consists of 96x96 images of tumor tissue, partitioned by the hospital that collected the sample.
The task is a binary classification to predict whether the sample contains tumor tissue. We use the
ResNet-18 model for this task and set τ to 21.0 for kNN and 56.0 for unlearning. We perform
the BadNets attack on Camelyon17, where the attacker injects 3000 samples (0.7% injection rate).
We evaluate 1000 instances of the attack for both labels, resulting in 2000 misclassification events.
Camelyon17 is typically used to simulate distribution shift [25] by training a model on a subset of
hospitals and measuring the performance difference on the left-out data. We apply this dataset to
evaluate the performance of our auditing algorithm on realistic data distributions of parties.
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