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large, diverse data === broad generalization



... however, many important tasks we
care about ...

Inaccessible

Health — Cancer, Alzheimer, Dementia, Depression
Finance — Economic growth, Market predictions
Government — Education, Taxes, Immigration, Income
Personal Data — Text Messages, Emails, Photos

= EU Data Governance Act (DGA).ecive rom 2023

facilitate the reuse of protected public-sector data
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Legal Frameworks and Technologies
to facilitate privacy preserving access
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Security and Privacy of Machine Learning

Data Train/Model Deploy/Serve

X—)Q — b=

» adversarial examples (perturbations) /Test
Q —1 = model extraction/inversion attacks

» poisoning attacks (backdoors)
Train
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Clients

Security and

Privacy of Collaborative ML

Train/Model Deploy/Serve
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= adversarial examples (perturbations) /Test
= model extraction/inversion attacks

= [ poisoning attacks (backdoors)
= | data stealing attacks Train

]
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Confidentiality of Input Data

Federation + Privacy

Information Stealing Attacks on Federated Learning

(e.g., Gradient Inversion, Gradient Amplifications, Trap Weights)

Wang et al., Beyond Inferring Class Representatives: User-Level Privacy Leakage From Federated Learning, 2019
Geipin et al., How easy is it to break privacy in federated learning?, 2020

Boenisch et al., When the curious abandon honesty: Federated learning is not private, 2021

Yin et al., See through Gradients: Image Batch Recovery via Gradlnversion, 2021

Wen et al., Fishing for user data in large-batch federated learning via gradient magnification, 2022
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Cryptography - Secure Computation
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Secure Decentralised Learning

= CryptoNets [Gilad-Bachrach et al. ICML'16]
= SecureML [Mohassel et al. S&P’18]

= EzPC [Chandran et al. EuroS&P’19]

= Helen [Zheng et al. S&P’19]

= Spindle [Froelicher et al. PETS’20]

= Cerebro [Zheng et al. USENIX Security’21]

CQEIEI

Secure Federated Learning

= Secure Aggregation [Bonawitz et al. CCS’'17]
» FastSecAgg [Kadhe et al. CCS Workshop PPML’20]
= SecAgg+ [CCS’20]
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Use existing crypto building blocks with careful consideration of performance!

Replace existing ML algorithms with cryptography-friendly ones
(e.q., low degree polynomial, approximate functions)



Collaborative Learning

Can Amplity Robustness Issues

Open Nature

2

Attacker Capabilities

Detectability
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Adversarial Robustness — Training
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Secure Federated Learning



Adversarial Robustness — Training

/ Data Poisoning \

(adversary controls training data)

Coordinator

Data Poisoning

Secure Federated Learning
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Adversarial Robustness — Training
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Adversarial Robustness — Training
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Adversarial Robustness — Training

Data Poisoning
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Secure Federated Learning
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Adversarial Robustness — Training

i

Data Poisoning
(adversary controls training data)

/L \ Model Poisoning

%EE gﬂﬁ (adversary controls model updates)

Secure Decentralized Learning
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Adversarial Robustness — Training

F—————
I commit(x)

Data Poisoning
I (adversary controls training data)

/&/ \ Model Poisoning

(adversary controls model updates)

|
| . .
I cryptographic commitment
% : . 2 yptograp

: commit(x)

Secure Decentralized Learning
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Robust ML Algorithms

cryptography-friendly
algorithms

Detection Mechanisms

assumes direct access to the
data or the gradients

Cryptography
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Cryptographic Verification

Zero-knowledge proofs, Cryptographic commitments, Proofs for program delegations, ...

Machine Learning Setting

In ML f is learned
(f = unknown ground truth)

Given P(X)
-- Verify what then?

/ \

The source of the issue is maliciously chosen data

—> alteration, proof/verify something about the input data, gradients, or data distribution
Theoretical work: Verify data distribution (infout/adversarial)

= Enforce constrains on the gradient updates (e.g., norm bound)

Verify Source of Data

Chiesa et al., Proofs of Proximity for Distribution Testing, 1TCS 2018
Goldwasser et al., /nteractive Proofs for Veritying Machine Learniag, ITCS 2021.
Burkhalter et al., FoFL. Attestable Robustness for Secure Federated Learning, arXiv:2107.03311, 2021



Overview Wrap Up

» Decoupling data from training, by itself, does not provide many privacy benetfits
= Encryption can help (e.g., secure aggregation, MPC)

= More work on robust ML in the encrypted settings
= Cryptography friendly robust ML algorithms
= Use cryptography (e.g., verification, ZKP) to minimize influence of maliciously chosen training data

» Post-Deployment

= Can we get robustness against all attacks? Answer: A perfect solution to adversarial robustness
remains an open challenge — imperfect defenses, cat-and-mouse game, more powerful attacks

» There is a need for solutions that minimize consequences of attacks at deployment time — e.g.,
attribution, forensics, accountability, audits, admission controls, monitoring ...



RoFL: Attestable Robustness for Secure FL

Lukas Burkhalter®, Hidde Lycklama*, Nicolas Kuchler, Alexander Viand, Anwar Hithnawi

Understand
Vulnerabilities in FL




Secure Federated Learning
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Model Replacement Attack

FL Server

Model Poisoning %
~1, a
Client E N a 2

. a Model
Dataset Train Encrypt Update
Secure Aggregation
Y |
Bemgg & Nllahclous Regu_lar Scaling Benign & Malicious
amples Training Samples

Bagdasaryan et al., How to backdoor Federated Learning, AISTATS 2020.
Bhagoiji et al., Analyzing Federated Learning through an Adversarial Lens, ICML 2019.




Problem: Linear aggregation rules are vulnerable

to Byzantine behavior

average + malicious

Machine Learning:

Byzantine-Robust Distributed Learning

- Krum [Blanchard et al. NeurlPS’17]

- Trimmed Mean [Yin et al. ICML’18]

- Coordinate-wise Median [Yin et al. ICML'18]

- Bulyan [Mhamdi et al. ICML’18]

- ByzantineSGD [Alistarh et al. NeurlPS'18]

- Redundant Workers and Coding Theory [Chen et al. ICML’18]
- [Rajput et al. NeurlPS'19]

Security:
Private Data-Collection Systems

- Prio [Corrigan-Gibbs et al. NSDI'17]
- PrivStats [Popa et al. CCS'11]

- SplitX [Chen et al. SIGCOMM’13]

- P4P [Duan et al. USENIX Security’10]
- Privex [Elahi et al. CCS’'14]

- Zero Knowledge Proofs: client proves that its submission is well-formed

32




A well-formed Client Submission in
-ederated Learning




Norm bound
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How To Backdoor Federated Learning

Can You Really Backdoor Federated Learning?

Attack of the Tails:
Yes, You Really Can Backdoor Federated Learning

Bagdasaryan et al., How fo backdoor Federated Learning, AISTATS 2020
Sun et al., Can you really backdoor federated learning?, Federated learning workshop at NeurlPS 2019
Wang et al., Attack of the Tails: Yes, You Really Can Backdoor Federated Learning, NeurlPS 2020
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Long Tall ...

CelebA Attribute % of Training Set

100

% of Training Set

S
o &F o Two common types of
O .
o examples in the
long-tail:
- Noisy

- Atypical

37
Fig: Hooker et al., 2019. Hooker, Moorosi et al., 2020.



Model Capacity Implications on Privacy ...

Prefix
East Stroudsburg Stroudsburg... J . .
o = eqen Jrom the Bible (1 Kings 7:2)
T Irish
GPT-2 agagagagagagag Andits length was J
ag ag ag one hundred cubits
[ Memorized text ] at one end

orporation Seabank Centre
Marine Parade Southport

B

Peter

.com
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Fax: +
\
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Memorization leads to
Leakage of private text

Fig Left — Carlini et al., Extracting Training Data from Large Language Models, USENIX Security 2021. 38
Fig Right — Tramer, From average-case to worst-case privacy leakage in neural networks”, talk at Privacy and Security in ML Interest Group, 2022.



Model Capacity Implications on Robustness...



Success of Backdoor Attacks

Prototypical Targets

L>-Bound: =—#— 20 —e— 5.0 —&— 30.0 —®— None

1001 “(,/"

.;::nni‘:...n.. sl ’
75- g; \ -
=y -
50 §
- |
25 1
Prototypical Tail
O— —e ———— et e e e

0 100 200 300 400 500
Round



Success of Backdoor Attacks

Tall Targets
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Suppressing the Long-Tail

Approaches

« Noise Addition
(Differential Privacy)

« Compression

# Samples

R e e
Prototypical Tail

Understand trade-offs between
objectives we care about

O ©

Robustness Accuracy Fairness Privacy
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More Resources ...

(44

Understanding how capacity impacts (fairness, robustness, privacy)

1S an increasingly urgent question. .

-- Sarah Hooker

In the Talk
The myth of interpretable, robust, compact and high performance DNNs

(44

Understanding the generalization properties of learning systems (...)
1S an area of great practical importance.

-- Vitaly Feldman

In the Paper
Does Learning Require Memorization? A Short Tale about a Long Tall

45



Binary View of Robustness



Where can Norm Bound Help?

Requires attacker to be consistently
Attack Type / selected a > 2.5%
Attack Target  Prototypical Talil
Clients
Single-shot 0
=% 8"@ = ,
| s S a<0.1%
Continuous O = E Dataset Train Encrypt
z £ ~
2% 8—'&) 18] | «<001%:
= E Dataset Train Encrypt
% of compromised clients, a

Norm Bound Provides Practical Robustness Guarantees
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RoFL: Attestable Robustness for Secure FL

Lukas Burkhalter®, Hidde Lycklama*, Nicolas Kuchler, Alexander Viand, Anwar Hithnawi
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Goal: Augment existing secure FL with Zero-Knowledge
Proofs to enforce constraints on model updates
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Secure Federated Learning
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RoFL Augments Secure FL
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Secure Aggregation

= Goal: Compute zAWi=Aw+Aw+AW
0 |ldea: Cancelling masks

/ \ S;+5S,+ 53 =0

Aw \\\\\\\\\\\‘III

+: modular addition

53
Bonawitz et al., Practical Secure Aggregation for Privacy-Preserving Machine Learning, CCS 2017.



Secure Aggregation

Aw+s
' Goal: Compute ZAWL—Aw+Aw+AW

|ldea: Cancelling masks

- \ Si+S,+55;=0
Aw+53\ . E(AW1+SL)—ZAWL

Aw + s,

+: modular addition

54
Bonawitz et al., Practical Secure Aggregation for Privacy-Preserving Machine Learning, CCS 2017.



Cryptographic Commitments

AWl'

Commitment
S C(AWi; Si) P FL Server
Binding Hiding
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Switching to Homomorphic Commitments

Additively homomorphic commitments

C(mqy,7)DC(My, 1) = C(Mmy +my, 1y +13)

C(AW S1)

C(AW 53) ‘ — C(Z AWL S;) = C(EA w;, 0)

C(AW S2)
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Zero-knowledge Proofs for Norm Constraints

C(p1,11)°
C(p?JTZ) Q Loo', LZ-nOrm
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Non-Interactive Zero-Knowledge
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Proofs
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—nforcing Lo,-norm

C(pp,11)]
C(pz2,12)

C(Pa,Ta)-

ElGamal commitments

Bulletproof Range Proofs

Bunz et al., Bulletoroofs. Short Proofs for
Contidential Transactions and More, S&P 2018.
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—nforcing L,-norm
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Problem: Scalability
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Can we reduce the number of proofs while maintaining
the same level of security?
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Optimizing L,
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Optimizing L,

- d 3
P -
= X rd
Mode! Upaate
parameters parameters

Li et al., Measuring the Intrinsic Dimension of Objective Landscapes, ICLR 2018.

Clients

Dataset

HO

- B

\ 4

Al

Train Encrypt

Prove

L2

s

y || @

fal LAl
Secure .
Aggregation Verify
FL Server

65




RoFL: End-To-End Performance

CIFAR-10 Model 270k Parameters  Setup: 48 Clients, 160 rounds

Plaintext |—2 .I—2 Optimized I_O<> .I_oo Optimized
Accuracy: 0.86 0.85 0.82 0.85 0.85
7000 . 28
N
6000 S 70
<= 000 10.6x >~ 60
'S 4000 17.3X = 50
— 9O 40
o 3000 =
- 3 30
£ 2000 Q5
= S
1000 N 10
0 ] — 0

* Per client per round



—valuation: End-To-End

Shakespeare Model 818k Parameters Setup: 48 Clients, 20 rounds

. Plaintext L . . L., Optimized

Accuracy: 0.57 0.57 0.57
1000 180
160
800 S 140
= .~ 120
c 600 < 100
~— O 80
GEJ 400 % 50
= 200 S 40
n 20
O O I

* Per client per round 67
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https://arxiv.org/pdf/2107.03311.pdf (Preprint)

Analysis Code: https://github.com/pps-lab/fl-analysis
RoFL Code: https://github.com/pps-lab/rofl-project-code
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