Security and Robustness of Collaborative Learning Systems

Anwar Hithnawi

Autonomous Driving

Data Driven World

Object Classification

AlphaGo

Health Care

large, diverse data ------ broad generalization

World

20000

Solving tasks where data is accessible...

Tasks

Public Data Crowdsourced Data

For example: web, books, articles, science, TV, corpus, audiobooks, ...

... however, many important tasks we care about ...

Inaccessible

Health – Cancer, Alzheimer, Dementia, Depression Finance – Economic growth, Market predictions Government – Education, Taxes, Immigration, Income Personal Data – Text Messages, Emails, Photos

→ EU Data Governance Act (DGA)_{effective from 2023} facilitate the reuse of protected public-sector data

Data Silos

- Privacy Laws
- Competition

Legal Frameworks and Technologies to facilitate privacy preserving access

Collaborative Learning

Collaborative Learning

Decentralized Learning

Collaborative Learning

Federated Learning

. . .

Decentralized Learning

Security and Privacy of Machine Learning

Data Train/Model

Deploy/Serve

Security and Privacy of Collaborative ML

Confidentiality of Input Data Federation ≠ Privacy

Information Stealing Attacks on Federated Learning (e.g., Gradient Inversion, Gradient Amplifications, Trap Weights)

Wang et al., Beyond Inferring Class Representatives: User-Level Privacy Leakage From Federated Learning, 2019 Geipin et al., How easy is it to break privacy in federated learning?, 2020 Boenisch et al., When the curious abandon honesty: Federated learning is not private, 2021 Yin et al., See through Gradients: Image Batch Recovery via GradInversion, 2021 Wen et al., Fishing for user data in large-batch federated learning via gradient magnification, 2022

Cryptography → Secure Computation

- FastSecAgg [Kadhe et al. CCS Workshop PPML'20]
 - SecAgg+ [CCS'20]

Spindle [Froelicher et al. PETS'20]Cerebro [Zheng et al. USENIX Security'21]

Helen [Zheng et al. S&P'19]

Cryptography -> Secure Computation

Use existing crypto building blocks with careful consideration of performance!

Replace existing ML algorithms with cryptography-friendly ones (e.g., low degree polynomial, approximate functions)

Final Model

Secure Decentralised Learning

- CryptoNets [Gilad-Bachrach et al. ICML'16]
- SecureML [Mohassel et al. S&P'18]
- EzPC [Chandran et al. EuroS&P'19]
- Helen [Zheng et al. S&P'19]
- Spindle [Froelicher et al. PETS'20]
- Cerebro [Zheng et al. USENIX Security'21]

- Secure Aggregation [Bonawitz et al. CCS'17]
- FastSecAgg [Kadhe et al. CCS Workshop PPML'20]
- SecAgg+ [CCS'20]

Collaborative Learning Can Amplify Robustness Issues

Open Nature

Attacker Capabilities

Detectability

Data Poisoning

Data Poisoning

Data Poisoning

Secure Decentralized Learning

Data Poisoning

(adversary controls training data)

Model Poisoning

(adversary controls model updates)

Robust ML AlgorithmsDetection MechanismsCryptographycryptography-friendly
algorithmsassumes direct access to the
data or the gradients?

Cryptographic Verification

Zero-knowledge proofs, Cryptographic commitments, Proofs for program delegations, ...

Conventional Setting Verify some pre-specified function *f*

Given **P**(x)

-- Verify: P(x) = f(x)

Machine Learning Setting

In ML f is learned (f = unknown ground truth)

Given **P**(x) -- Verify what then?

The source of the issue is maliciously chosen data

 \rightarrow alteration, proof/verify **something** about the input data, gradients, or data distribution

- Theoretical work: Verify data distribution (in/out/adversarial)
- Enforce constrains on the gradient updates (e.g., norm bound)
- Verify Source of Data

• ..

Chiesa et al., *Proofs of Proximity for Distribution Testing*, ITCS 2018 Goldwasser et al., *Interactive Proofs for Verifying Machine Learning*, ITCS 2021. Burkhalter et al., *RoFL: Attestable Robustness for Secure Federated Learning*, arXiv:2107.03311, 2021

Overview Wrap Up

- Decoupling data from training, by itself, does not provide many privacy benefits
 - Encryption can help (e.g., secure aggregation, MPC)
- More work on robust ML in the encrypted settings
 - Cryptography friendly robust ML algorithms
 - Use cryptography (e.g., verification, ZKP) to minimize influence of maliciously chosen training data
- Post-Deployment
 - Can we get robustness against all attacks? Answer: A perfect solution to adversarial robustness remains an open challenge – imperfect defenses, cat-and-mouse game, more powerful attacks
 - There is a need for solutions that minimize consequences of attacks at deployment time e.g., attribution, forensics, accountability, audits, admission controls, monitoring ...

RoFL: Attestable Robustness for Secure FL

Lukas Burkhalter*, Hidde Lycklama*, Nicolas Küchler, Alexander Viand, Anwar Hithnawi

Understand Vulnerabilities in FL

Cryptographically Enforce Constraints

Model Replacement Attack

Machine Learning:SByzantine-Robust Distributed LearningF

- Krum [Blanchard et al. NeurIPS'17]
- Trimmed Mean [Yin et al. ICML'18]
- Coordinate-wise Median [Yin et al. ICML'18]
- Bulyan [Mhamdi et al. ICML'18]
- ByzantineSGD [Alistarh et al. NeurIPS'18]
- Redundant Workers and Coding Theory [Chen et al. ICML'18]
- [Rajput et al. NeurIPS'19]

Security: Private Data-Collection Systems

- Prio [Corrigan-Gibbs et al. NSDI'17]
- PrivStats [Popa et al. CCS'11]
- SplitX [Chen et al. SIGCOMM'13]
- P4P [Duan et al. USENIX Security'10]
- PrivEx [Elahi et al. CCS'14]

 \rightarrow Zero Knowledge Proofs: client proves that its submission is well-formed

A well-formed Client Submission in Federated Learning

Norm bound

How To Backdoor Federated Learning

Can You Really Backdoor Federated Learning?

Attack of the Tails: Yes, You Really Can Backdoor Federated Learning

Bagdasaryan et al., *How to backdoor Federated Learning,* AISTATS 2020 Sun et al., *Can you really backdoor federated learning?*, Federated learning workshop at NeurIPS 2019 Wang et al., *Attack of the Tails: Yes, You Really Can Backdoor Federated Learning,* NeurIPS 2020

Why?

Long Tail ...

Model Capacity Implications on Privacy ...

Somali • Translate from Irish ag er Memorization

Memorization leads to Leakage of private text

Fig Left – Carlini et al., *Extracting Training Data from Large Language Models*, USENIX Security 2021. Fig Right – Tramer, From average-case to worst-case privacy leakage in neural networks", talk at Privacy and Security in ML Interest Group, 2022.

Model Capacity Implications on Robustness...

Success of Backdoor Attacks

Success of Backdoor Attacks

Suppressing the Long-Tail

Approaches

- Noise Addition (Differential Privacy)
- Compression

Leads to Fairness Problems

Differential Privacy disproportionately impacts underrepresented attributes [Bagdasaryan et al. NeurIPS 2019]

Understand trade-offs between objectives we care about

Accuracy

Fairness

More Resources ...

66

Understanding how capacity impacts (fairness, robustness, privacy) is an increasingly urgent question.

-- Sarah Hooker

In the Talk

The myth of interpretable, robust, compact and high performance DNNs

66

Understanding the generalization properties of learning systems (...) is an area of great practical importance.

-- Vitaly Feldman

In the Paper Does Learning Require Memorization? A Short Tale about a Long Tail

Binary View of Robustness

Where can Norm Bound Help?

Norm Bound Provides Practical Robustness Guarantees

RoFL: Attestable Robustness for Secure FL

Lukas Burkhalter*, Hidde Lycklama*, Nicolas Küchler, Alexander Viand, Anwar Hithnawi

Understand Vulnerabilities in FL

Cryptographically Enforce Constraints

Goal: Augment existing secure FL with Zero-Knowledge Proofs to enforce constraints on model updates

Secure Federated Learning

Clients

• • •

FL Server

RoFL Augments Secure FL

Secure Aggregation

Goal: Compute
$$\sum \Delta w_i = \Delta w + \Delta w + \Delta w$$

Idea: Cancelling masks

 $s_1 + s_2 + s_3 = 0$

+: modular addition

Bonawitz et al., Practical Secure Aggregation for Privacy-Preserving Machine Learning, CCS 2017.

Secure Aggregation

+: modular addition

Bonawitz et al., Practical Secure Aggregation for Privacy-Preserving Machine Learning, CCS 2017.

Cryptographic Commitments

Switching to Homomorphic Commitments

Zero-knowledge Proofs for Norm Constraints

Enforcing L_{∞} -norm

Enforcing L₂-norm

Problem: Scalability

High-dimensional updates

Number of clients

Can we reduce the number of proofs while maintaining the same level of security?

Optimizing L_{∞}

Clients

Commitments Δw , range proofs \mathbf{Q}

62

Optimizing L_{∞}

FL Server

Li et al., Measuring the Intrinsic Dimension of Objective Landscapes, ICLR 2018.

Aggregation

FL Server

RoFL: End-To-End Performance

CIFAR-10 Model 270k Parameters

Setup: 48 Clients, 160 rounds

66

Evaluation: End-To-End

Shakespeare Model 818k Parameters

Setup: 48 Clients, 20 rounds

https://arxiv.org/pdf/2107.03311.pdf (Preprint)

Analysis Code: <u>https://github.com/pps-lab/fl-analysis</u> RoFL Code: <u>https://github.com/pps-lab/rofl-project-code</u>