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Solving tasks where data is 
accessible…

Tasks

… however, many important tasks we 
care about ...

Inaccessible

Public Data Crowdsourced Data

For example: web, books, articles, science, TV, 
corpus, audiobooks, … 

ImageNet
MNIST

CIFAR
WMT

GPT-3

WikiText-103 Finance – Economic growth, Market predictions 
Government – Education, Taxes, Immigration, Income
Personal Data – Text Messages, Emails, Photos 

Health – Cancer, Alzheimer, Dementia, Depression 

Data Silos
- Privacy Laws
- Competition

à EU Data Governance Act (DGA) 
facilitate the reuse of protected public-sector data

Legal Frameworks and Technologies 
to facilitate privacy preserving access

effective from 2023
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Collaborative Learning
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Decentralized Learning

!Coordinator

𝑤
𝚫 𝑤

Federated  Learning

…



Security and Privacy of Machine Learning

Χ
Data Train/Model Deploy/Serve

𝜃 𝒴$
𝑥

§ adversarial examples (perturbations)
§ model extraction/inversion attacks
§ poisoning attacks (backdoors)

Train 

Test
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Train 

Test

Security and Privacy of Collaborative ML
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§ adversarial examples (perturbations)
§ model extraction/inversion attacks
§ poisoning attacks (backdoors)
§ data stealing attacks  
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Confidentiality of Input Data 
Federation ≠ Privacy

Information Stealing Attacks on Federated Learning
(e.g., Gradient Inversion, Gradient Amplifications, Trap Weights)

Wang et al., Beyond Inferring Class Representatives: User-Level Privacy Leakage From Federated Learning, 2019
Geipin et al., How easy is it to break privacy in federated learning?, 2020
Boenisch et al., When the curious abandon honesty: Federated learning is not private, 2021
Yin et al., See through Gradients: Image Batch Recovery via GradInversion, 2021
Wen et al., Fishing for user data in large-batch federated learning via gradient magnification, 2022
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Cryptography à Secure Computation

!Coordinator

𝑤
𝚫 𝑤

Secure Decentralised Learning
Secure Federated Learning § CryptoNets [Gilad-Bachrach et al. ICML’16]

§ SecureML [Mohassel et al. S&P’18]
§ EzPC [Chandran et al. EuroS&P’19]
§ Helen [Zheng et al. S&P’19]
§ Spindle [Froelicher et al. PETS’20]
§ Cerebro [Zheng et al. USENIX Security’21]

Secure Multi-Party 
Computation (MPC)

Secure Aggregation

§ Secure Aggregation [Bonawitz et al. CCS’17]
§ FastSecAgg [Kadhe et al. CCS Workshop PPML’20]
§ SecAgg+ [CCS’20]

Final Model

Leaks Intermediate 
Results 

…
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𝑤
𝚫 𝑤

Secure Decentralised Learning
Secure Federated Learning § CryptoNets [Gilad-Bachrach et al. ICML’16]

§ SecureML [Mohassel et al. S&P’18]
§ EzPC [Chandran et al. EuroS&P’19]
§ Helen [Zheng et al. S&P’19]
§ Spindle [Froelicher et al. PETS’20]
§ Cerebro [Zheng et al. USENIX Security’21]

Secure Multi-Party 
Computation (MPC)

Secure Aggregation

§ Secure Aggregation [Bonawitz et al. CCS’17]
§ FastSecAgg [Kadhe et al. CCS Workshop PPML’20]
§ SecAgg+ [CCS’20]

Final Model

Leaks Intermediate 
Results 

Use existing crypto building blocks with careful consideration of performance! 

Replace existing ML algorithms with cryptography-friendly ones
(e.g., low degree polynomial, approximate functions)



Collaborative Learning
Can Amplify Robustness Issues

Open Nature

…

Attacker Capabilities Detectability
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Adversarial Robustness – Training   
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𝜑( )
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Adversarial Robustness – Training

!Coordinator

𝑤
𝚫 𝑤

Secure Federated Learning 

Data Poisoning

Data Poisoning
(adversary controls training data) 

Train

Dog

+ , Dog

Test

Model Poisoning
(adversary controls model updates) 

Model Poisoning
x 𝛾

Scaling Crafted
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Adversarial Robustness – Training

Secure Decentralized Learning 

Data Poisoning
(adversary controls training data) 

Model Poisoning
(adversary controls model updates) 
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Adversarial Robustness – Training

Secure Decentralized Learning 

Data Poisoning
(adversary controls training data) 

Model Poisoning
(adversary controls model updates) 

cryptographic commitment

commit(x)

commit(x)

commit(x)
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Adversarial Robustness – Training

Secure Decentralized Learning 

Data Poisoning
(adversary controls training data) 

Model Poisoning
(adversary controls model updates) 

cryptographic commitment

commit(x)

commit(x)

commit(x)



Detection Mechanisms 

cryptography-friendly
algorithms 

Robust ML Algorithms Cryptography

?assumes direct access to the 
data or the gradients 
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Verify some pre-specified function 𝒇
Given 𝑷(x)
-- Verify: 𝑷(x) = 𝒇(x)

Cryptographic Verification

Conventional Setting Machine Learning Setting
In ML 𝒇 is learned
(𝒇 = unknown ground truth) 
Given 𝑷(x)
-- Verify what then? 

Zero-knowledge proofs, Cryptographic commitments, Proofs for program delegations, …

The source of the issue is maliciously chosen data
à alteration, proof/verify something about the input data, gradients, or data distribution

§ Theoretical work: Verify data distribution (in/out/adversarial)
§ Enforce constrains on the gradient updates (e.g., norm bound)
§ Verify Source of Data
§ …

Chiesa et al., Proofs of Proximity for Distribution Testing, ITCS 2018
Goldwasser et al., Interactive Proofs for Verifying Machine Learning, ITCS 2021.

Burkhalter et al., RoFL: Attestable Robustness for Secure Federated Learning, arXiv:2107.03311, 2021
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Overview Wrap Up
§ Decoupling data from training, by itself, does not provide many privacy benefits

§ Encryption can help (e.g., secure aggregation, MPC)

§ More work on robust ML in the encrypted settings
§ Cryptography friendly robust ML algorithms
§ Use cryptography (e.g., verification, ZKP) to minimize influence of maliciously chosen training data 

§ Post-Deployment 
§ Can we get robustness against all attacks? Answer: A perfect solution to adversarial robustness 

remains an open challenge – imperfect defenses, cat-and-mouse game, more powerful attacks 
§ There is a need for solutions that minimize consequences of attacks at deployment time – e.g., 

attribution, forensics, accountability, audits, admission controls, monitoring …
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RoFL: Attestable Robustness for Secure FL
Lukas Burkhalter*, Hidde Lycklama*, Nicolas Küchler, Alexander Viand, Anwar Hithnawi

Understand 
Vulnerabilities in FL

Cryptographically
Enforce Constraints 
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FL Server

Clients

B
en

ig
n

Dataset Train Encrypt

Secure Federated Learning

Dataset Train Encrypt
D

at
a
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Dataset Train EncryptM
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el
Po

is
on

in
g Secure Aggregation

Model
Update

What are the vulnerabilities in the FL pipeline 
that enable model/data poisoning attacks
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Model Replacement Attack

Dataset Train Encrypt

Model Poisoning

Regular 
Training

Benign & Malicious 
Samples Scaling

x 𝛾
Benign & Malicious 

Samples 

Car
Bird

FL Server

Secure Aggregation

Model
Update

Bagdasaryan et al., How to backdoor Federated Learning, AISTATS 2020.
Bhagoji et al., Analyzing Federated Learning through an Adversarial Lens, ICML 2019.

Client
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Problem: Linear aggregation rules are vulnerable 
to Byzantine behavior 

Machine Learning: 
Byzantine-Robust Distributed Learning
- Krum [Blanchard et al. NeurIPS’17]
- Trimmed Mean [Yin et al. ICML’18]
- Coordinate-wise Median [Yin et al. ICML’18]
- Bulyan [Mhamdi et al. ICML’18]
- ByzantineSGD [Alistarh et al. NeurIPS’18]
- Redundant Workers and Coding Theory [Chen et al. ICML’18]
- [Rajput et al. NeurIPS’19]

Security: 
Private Data-Collection Systems
- Prio [Corrigan-Gibbs et al. NSDI’17] 
- PrivStats [Popa et al. CCS’11]
- SplitX [Chen et al. SIGCOMM’13]
- P4P [Duan et al. USENIX Security’10]
- PrivEx [Elahi et al. CCS’14]

à Zero Knowledge Proofs: client proves that its submission is well-formed

average + malicious

32



A well-formed Client Submission in 
Federated Learning  

33



Norm bound
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Bagdasaryan et al., How to backdoor Federated Learning, AISTATS 2020
Sun et al., Can you really backdoor federated learning?, Federated learning workshop at NeurIPS 2019
Wang et al., Attack of the Tails: Yes, You Really Can Backdoor Federated Learning, NeurIPS 2020
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Why?
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Long Tail …

Fig: Hooker et al., 2019. Hooker, Moorosi et al., 2020.
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Model Capacity Implications on Privacy …

Fig Left – Carlini et al., Extracting Training Data from Large Language Models, USENIX Security 2021.
Fig Right – Tramer, From average-case to worst-case privacy leakage in neural networks”, talk at Privacy and Security in ML Interest Group, 2022.

Memorization leads to 
Leakage of private text

Memorization
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Model Capacity Implications on Robustness… 
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Success of Backdoor Attacks
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Suppressing the Long-Tail
Approaches
• Noise Addition 

(Differential Privacy)
• Compression

PrivacyFairnessAccuracy Robustness

Understand  trade-offs between 
objectives we care about

Gap

Gap Gap

Differential Privacy disproportionately 
impacts underrepresented attributes
[Bagdasaryan et al. NeurIPS 2019]

Leads to Fairness Problems
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More Resources … 

Understanding how capacity impacts  (fairness, robustness, privacy) 
is an increasingly urgent question.

-- Sarah Hooker 
In the Talk 
The myth of interpretable, robust, compact and high performance DNNs 

“

”

Understanding the generalization properties of learning systems (…) 
is an area of great practical importance.

-- Vitaly Feldman
In the Paper
Does Learning Require Memorization? A Short Tale about a Long Tail

“

”  
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Binary View of Robustness
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Norm Bound Provides Practical Robustness Guarantees

Attack Type / 
Attack Target Prototypical Tail

Single-shot ✅ ✅

Continuous ✅ ⭕

% of compromised clients, 𝜶

Dataset Train Encrypt

D
at

a
Po

is
on

in
g

Dataset Train EncryptM
od

el
Po

is
on

in
g

𝜶 ≤ 0.01%!

𝜶 ≤ 0.1%!

Clients

Requires attacker to be consistently 
selected 𝜶 > 2.5%

Where can Norm Bound Help?
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RoFL: Attestable Robustness for Secure FL
Lukas Burkhalter*, Hidde Lycklama*, Nicolas Küchler, Alexander Viand, Anwar Hithnawi

Understand 
Vulnerabilities in FL

Cryptographically
Enforce Constraints 
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Goal: Augment existing secure FL with Zero-Knowledge 
Proofs to enforce constraints on model updates 

Scalability

…
𝑝+
𝑝,

⋮

𝑝-

Compatibility

Secure 
Aggregation

FL Server
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Secure Federated Learning
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…
Secure 

Aggregation
Model
Update

FL Server

Clients

Dataset Train Encrypt

Dataset Train Encrypt



RoFL Augments Secure FL
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…
Secure 

Aggregation
Model
Update

FL Server

Clients

Dataset Train Encrypt Prove

RoFL Proxy Modules

Verify

Zero-knowledge Proofs

Dataset Train Encrypt Prove



Secure Aggregation

𝚫 𝑤

𝚫 𝑤

𝚫 𝑤
Goal: Compute ,𝚫𝑤! = 𝚫 𝑤 + 𝚫 𝑤 + 𝚫 𝑤

𝑠/ + 𝑠0+ 𝑠1 = 0
Idea: Cancelling masks

+: modular addition

Bonawitz et al., Practical Secure Aggregation for Privacy-Preserving Machine Learning, CCS 2017.
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Secure Aggregation 

𝚫𝑤 + 𝑠"

Goal: Compute ,𝚫𝑤! = 𝚫 𝑤 + 𝚫 𝑤 + 𝚫 𝑤

𝑠/ + 𝑠0+ 𝑠1 = 0
Idea: Cancelling masks

+: modular addition

𝚫𝑤 + 𝑠#

𝚫𝑤 + 𝑠$ ,(𝚫𝑤! + 𝑠!) =,𝚫𝑤!

Bonawitz et al., Practical Secure Aggregation for Privacy-Preserving Machine Learning, CCS 2017.
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Cryptographic Commitments

55

𝚫 𝑤4

commit 𝐶 𝚫𝑤4 , 𝑠4

Commitment

FL Server
HidingBinding

Proof



Switching to Homomorphic Commitments

𝐶(∆𝑤, 𝑠")

𝐶(∆𝑤, 𝑠#)

𝐶(∆𝑤, 𝑠$) 𝐶(,𝚫𝑤!,,𝑠!) = 𝐶(,𝚫 𝑤!, 0)

= (𝑔∑𝚫&!ℎ', 𝑔') = (𝑔∑𝚫&! , 𝑔')

56

Additively homomorphic commitments

𝐶 𝑚+, 𝑟+ ⨁𝐶 𝑚,, 𝑟, = 𝐶(𝑚+ +𝑚,, 𝑟+ + 𝑟,)



Zero-knowledge Proofs for Norm Constraints 

ElGamal commitments

𝐶(𝑝+, 𝑟+)
𝐶(𝑝,, 𝑟,)

⋮
𝐶(𝑝-, 𝑟-)

Non-Interactive Zero-Knowledge 
Proofs

𝐿.-, 𝐿,-norm 
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Enforcing 𝐿!-norm

ElGamal commitments

𝐶(𝑝+, 𝑟+)
𝐶(𝑝,, 𝑟,)

⋮
𝐶(𝑝-, 𝑟-)

Bulletproof Range Proofs

−𝑏 ≤ 𝑝+ ≤ 𝑏
−𝑏 ≤ 𝑝, ≤ 𝑏

⋮
−𝑏 ≤ 𝑝- ≤ 𝑏

Bünz et al., Bulletproofs: Short Proofs for 
Confidential Transactions and More, S&P 2018.
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Enforcing 𝐿"-norm

ElGamal commitments

𝐶(𝑝+, 𝑟+)
𝐶(𝑝,, 𝑟,)

⋮
𝐶(𝑝-, 𝑟-)

Range Proofs

−𝑏 ≤ 𝑝+ ≤ 𝑏
−𝑏 ≤ 𝑝, ≤ 𝑏

⋮
−𝑏 ≤ 𝑝- ≤ 𝑏

𝐶(𝑝+,, 𝑟+)
𝐶(𝑝,,, 𝑟,)

⋮
𝐶(𝑝-,, 𝑟-)

Proof of Square 
Relation

⇔

Square 
Proof

!
"#!

$

𝑝"% ≤ 𝐵%
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Problem: Scalability

High-dimensional updates

>	100k

𝑝+
𝑝,

⋮

𝑝-

Number of clients

…
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Can we reduce the number of proofs while maintaining 
the same level of security?
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Optimizing 𝐿!

62

Secure 
Aggregation

FL Server

Verify

Clients

Dataset Train Encrypt Prove

Number of required checksNumber of scaled weights required

Commitments 𝚫𝑤, range proofs



Optimizing 𝐿!
Commitments 𝚫𝑤

Proof indices

Range proofs
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Secure 
Aggregation

FL Server

Verify

Clients

Dataset Train Encrypt Prove

Number of required checksNumber of scaled weights required



Optimizing 𝐿"

Li et al., Measuring the Intrinsic Dimension of Objective Landscapes, ICLR 2018.

Update 
parameters

2𝑑P
X=

Model 
parameters

𝑑
2𝑑𝐿!
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Secure 
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FL Server
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Clients

Dataset Train Encrypt Prove

𝑑



RoFL: End-To-End Performance
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CIFAR-10 Model 270k Parameters Setup: 48 Clients, 160 rounds
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Evaluation: End-To-End
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Shakespeare Model 818k Parameters Setup: 48 Clients, 20 rounds
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RoFL Code: https://github.com/pps-lab/rofl-project-code
Analysis Code: https://github.com/pps-lab/fl-analysis

https://arxiv.org/pdf/2107.03311.pdf (Preprint)

pps-lab.com

https://github.com/pps-lab/rofl-project-code
https://github.com/pps-lab/fl-analysis
https://arxiv.org/pdf/2107.03311.pdf

