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Morgan Stanley settles personal data breach

lawsuit for $60 million

Data Breaches Keep Happening. So
Why Don’t You Do Something?

Capital One Data Breach

Compromises Data of Over 100 @
Million

All 3 Billion Yahoo Accounts Were
Affected by 2013 Attack

€

p

The Government Uses ‘Near
Perfect Surveillance’ Data on
Americans

Congressional hearings are urgently
needed to address location tracking. @

Grindr and OkCupid Spread Personal
Details, Study Says

Norwegian research raises questions about whether certain
of sharing of information violate data privacy laws in Europ 1p
the United States.

You Should Be Freaking Out
About Privacy

Nothing to hide, nothing to fear? Think E
again.

Technology

Data broker shared billions of
location records with District during
pandemic

The bulk sales of location data have fueled a debate over public health and mip
privacy
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~ 1.245 Billion

The number of data
records stolen in 2020

143,000,000 57,000,000 330,000,000 533,000,000
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2017 2017 2018 2019
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Where the sensitive information is

concentrated, that is where the spies

will go. This is just a fact of life. 99
former NSA official Ken Silva.
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Where the sensitive information is
concentrated, that is where the spies

will go. This is just a fact of life. 99
former NSA official Ken Silva.

Software Vulnerabilities

Insider Threats

Physical Attacks




End-to-End Encrypted Systems
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More Applications?
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Modern Cryptography
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Modern Cryptography

, data at rest
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Conventional Crypto e——
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Modern Cryptography

, data at rest

Ubiquitous Adoption

Conventional Crypto e—

Encryption & Digital Signature

End-to-End

'secure storage

B

Security

data in transit
secure communication

Just Starting

—e Advanced Crypto

« Homomorphic Encryption
» Secure Multi-party Computation
« Zero Knowledge Proofs

data in use
secure computation



Fully Homomorphic Encryption

Enables computation on encrypted data




Fully Homomorphic Encryption

Enables computation on encrypted data

x —> — e (R
¢

e O

i
fx) «— < Enc(f(x))

Delegate the processing of data without giving away access to it
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40 Years of FHE History

PHE SWHE FHE
RSA 78 Pailier 99
BGN ‘05 30 min
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FHE is not yet practical for many applications
but will soon be practical for a wider set of applications...



Performance gap of
modern applications o
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FHE is not yet practical for many applications
but will soon be practical for a wider set of applications...
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Facilitate FHE use in real
world deployment o
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Privacy protection means more than securing the data ...



Data Misuse

use of data for purposes that
the user did not agree to



End-to-End Encrypted Systems

Fundamental issue: unrestricted views of the data

[\
m (.9.2E \ %
2 4 > “‘s‘ :



End-to-End Encrypted Systems - End-to-End Privacy

privacy enhanced
Fundamental issue: wasaskdeted vicws of the data
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End-to-End Encrypted Systems - End-to-End Privacy

privacy enhanced

Fundamental issue: wasaskdeted vicws of the data
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Data Minimization

Purpose Limitation




@ Goal:

End-to-End Security = End-to-End Privacy
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@ Goal:

End-to-End Security = End-to-End Privacy

data confidentiality & strong privacy guarantees
unauthorized parties authorized parties



|\/|y Research: Building practical systems that use cryptography to empower users
' and preserve their privacy & tools to democratize cryptography

Zeph
[Usenix OSDI'21] Privacy
Enforcement
Talos & Pilatus Droplet TimeCrypt
[SenSys’'15 & ‘17] | [Usenix Sec’20]| [Usenix NSDI'20] Functionality &
Performance
RoFL
[In Submission]
Robustness
FHE Compilers HECO
[IEEE S&P’21] [In Submission]

Accessibility
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One of Many Scenarios
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One of Many Scenarios

213 sl @

< Back Metro and Heatmap

| Privacy Transformation “Daily popular running tracks”

Include your activities in Metro
and Heatmap

We realize that your privacy is of utmost
importance when sharing your information, and
we've taken precautions to protect it. Metro
and Heatmap display aggregate data about
where athletes have recorded activities. These
aggregate data sets do not include private
activities or portions of activities within your
privacy zones. Learn more

Why contribute?

Because Strava Metro and the Global Heatmap make
running and riding in cities better. Metro displays
aggregate Strava data to inform urban planners and
advocacy groups about human-powered
transportation trends. The Global Heatmap, powered
exclusively by contributions from athletes like you, is
one of the world's best free resources for route and
trail discovery.

Policy e Temporal
Spatial

The Strava Metro data set is made exclusively for
urban planners and active transportation advocates.

el Bt ° -
o STRAV Population

about now many CycisLs 100e N wiicn arecuon on a
given street hour-by-hour, but no information about
which cyclists rode on that street.

Day 6

A Y @ & @

Home Record Groups
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Existing End-to-End Encrypted Streaming Pipeline
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Integrate Privacy Controls into Existing Pipelines
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Integrate Privacy Controls into Existing Pipelines
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Integrate Privacy Controls into Existing Pipelines

Policy
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State-of-the-art

Privacy Protocols
Public:
aggregation + masking

Policy
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State-of-the-art

Privacy Protocols
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State-of-the-art Our Approach

Privacy Protocols
Public:
aggregation + masking

Privacy Platform

Public:

generic data upload for multiple
privacy transformations
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1. Compatibility with Existing Systems
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2. Data with Heterogeneous Privacy Policies
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Zeph’s Approach
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Zeph’s Approach
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Zeph’s Approach
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Zeph’s Approach
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Zeph’s Approach
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Zeph's Approach
@ Federated Privacy / Privacy Transformation \

Control
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Cryptographic Privacy Tokens
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Cryptographic Privacy Tokens
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Cryptographic Privacy Tokens
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Cryptographic Privacy Tokens

Unfettered view

of the data ’N

A— Ench,9)— A — f(A)— Dec(w ,)—V

Privacy enhanced
view of the data



Zeph’s Threat Model and Assumptions




Privacy Transformations
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Existing Privacy Transformations

“Practical” Privacy Tools

Data Masking

Pseudonymization

_{

Tokenization

Perturbation

Redaction

Date Shifting

Data Generalization

ooo
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Bucketing

1%

Time Resolution

Population

Differential Privacy DP

Additive Noise Mechanism

-

Others (e.g., ME, SVT)
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Anonymity &

Formal Privacy Models




How Zeph augments existing System Designs
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How Zeph augments existing System Designs
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How Zeph augments existing System Designs
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Contributions
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Cryptographic Enforcement of Privacy

1) Confidentiality of data

2) Transformation Authorization
by Privacy Controller

Privacy

Controller

3) Compute transformation on
confidential data

Data
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and independent of data




Cryptographic Enforcement of Privacy

1) Confidentiality of data

2) Transformation Authorization
by Privacy Controller

3) Compute transformation on
confidential data

4) Privacy Controller is efficient
and independent of data

Additive Homomorphic Secret Sharing
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Cryptographic Enforcement of Privacy

1) Confidentiality of data Additive Homomorphic Secret Sharing
Data
2) Transformation Authorization Producer ?
by Privacy Controller

3) Compute transformation on A

confidential data \

4) Privacy Controller is efficient “
and independent of data




Cryptographic Enforcement of Privacy

1) Confidentiality of data Additive Homomorphic Secret Sharing

Data Privacy Controller

/
2) Transformation Authorization Producer ? f ( ? ) _

by Privacy Controller \

3) Compute transformation on A

confidential data \

4) Privacy Controller is efficient “
and independent of data




Cryptographic Enforcement of Privacy

1) Confidentiality of data Additive Homomorphic Secret Sharing

Data Privacy Controller

/
2) Transformation Authorization Producer ? f ( ? ) _

by Privacy Controller

Privacy enhanced
view of the data

3) Compute transformation on A

confidential data \

v

4) Privacy Controller is efficient “
f(A) Server

and independent of data




Privacy Transformations

“Practical” Privacy Tools

Data Masking

Pseudonymization
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Privacy Transformations

“Practical” Privacy Tools

Data Masking

Pseudonymization
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Additive Homomorphic Privacy Transformations
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Additive Homomorphic Privacy Transformations BIEED
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Enable Federated Privacy Control

“multiple Data Producers - one Privacy Controller”
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Enable Federated Privacy Control

“multiple Data Producers - multiple Privacy Controllers”
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Enable Federated Privacy Control

“multiple Data Producers - multiple Privacy Controllers”

Secure Aggregation Protocol
Only reveal the aggregation of the
. keys to the server
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Zeph Implementation and Evaluation
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Zeph Implementation and Evaluation aws

Data Producer &
Privacy Controller

c(g >) @ The Rust
- Programming
— Language
Java

N

ANSIBLE

Privacy Transformation

& kaifka

Fitness Website Smart Car
App Analytics



Zeph Implementation and Evaluation
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Web Analytics: End-to-End Benchmark .
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Web Analytics: End-to-End Benchmark .
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TimeCrypt (Usenix NSDI '20)

Encrypted Time Series Database



Can we enable encrypted data
processing for time series workloads?



Can we enable encrypted data
processing for time series workloads?

Large Scale

Low-Latency
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Time Series Data

is Emerging Everywhere

Time-ordered observations of a quantitative characteristic of an
individual or phenomenon taken at successive points in time.

g B T

Financial Health Monitoring Smart Grid Internet of Things DevOps/Telemetry
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Time Series Data

is Emerging Everywhere

Time-ordered observations of a quantitative characteristic of an
individual or phenomenon taken at successive points in time.

high resolution sensitive data!

g B T

Financial Health Monitoring Smart Grid Internet of Things DevOps/Telemetry
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Time Series Databases

Time Series Workloads Performance Requirements
= Primarily INSERTS to recent time interval = High throughput writes
= Statistical queries over time ranges = Data compaction (aging out data)
= Single writer = Scale with data volume and velocity

TIMESCALE @ influxdata I(aircsDB



&
—— Dﬂﬂug

oloX I |

OO eeo

-

Services

Data Sources



. . TS Access Control Semantics
Constrained Devices

Low-latency

/ Large volume /

Y / 6
/ / &
1RJE 000000000000 — A
T O00000000000

_ 000000000000
['E* 000000000000 ~— |l ©
Data Sources Services

Functionality of TSDB



TS Access Control Semantics

Constrained Devices

Low-latency

/ Large volume /

Y / 6
/ / &
1RJE 000000000000 — A
T O00000000000

_ 000000000000
['E* 000000000000 ~— |l ©
Data Sources Services

Functionality of TSDB




Cryptographic Access Control
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Cryptographic Access Control
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Cryptographic Access Control

The services learned more than they needed!
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Cryptographic Access Control

The services learned more than they needed! Fine grained data f')
protection
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Cryptographic Access Control

Support time series access control semantics
m [ime m Resolution m Attribute
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Cryptographic Access Control

Support time series access control semantics
m [ime m Resolution m Attribute
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Cryptographic Access Control

Support time series access control semantics
m [ime m Resolution m Attribute

Poli Cy(i ) 9 Doctor

Policy(C | )
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TimeCrypt

Encrypted Time Series Database that enables scalable computation over
large volumes of encrypted time series data.

SVl ilelaE Il Statistical queries and lifecycle operations over encrypted data

Cryptographic

Fine-grained access policies over time, resolution, and attributes
Access Control

Data Secrecy -- Homomorphic Encryption

Security Function Integrity -- Homomorphic MACs

Efficiency Interactive queries over large scale data




Large-Scale Challenges

Lots of Data: Fine-grained Access Control:
Supporting “big data” Scalability as data and the
computations number of data consumers grow

E.g., Partial Homomorphic Encryption [Paillier] E.g., Attribute Based Encryption [KP-ABE]
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Solution that supports both fine-grained access control
and computations over large-scale encrypted data
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Building Blocks

Additive Symmetric Homomorphic Encryption [Castelluccia]

= Dec. cost O(n) - Key cancelling O(1) = Key Identifiers > Time-encoded key-streams
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Building Blocks

Additive Symmetric Homomorphic Encryption [Castelluccia]

Efficiency
= Dec. cost O(n) - Key cancelling O(1) = Key Identifiers > Time-encoded key-streams

Aggregatable Digests

Known encodings: If we can compute sum privately, then we can compute f(-) privately

Expressiveness

. shared token

? shared keys
KDF

¥ \( hash functions

Yol R ®lolglife]ll New Key Derivation Construction

0000000000000000 | Niviuhic
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TimeCrypt System Architecture
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System Performance
[ 2% slowdown compared to plaintext
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|\/|y Research: Building practical systems that use cryptography to empower users
' and preserve their privacy & tools to democratize cryptography

Zeph
[Usenix OSDI'21] Privacy
Enforcement
Talos & Pilatus Droplet TimeCrypt
[SenSys’15 & ‘17] | [Usenix Sec’20]| [Usenix NSDI'20] Functionality &
Performance
RoFL
[In Submission]
Robustness
FHE Compilers HECO
[IEEE S&P’21] [In Submission]

Accessibility




Fully Homomorphic Encryption Accessibility

(IEEE S&P ‘21)
Advanced Programming
Cryptography Languages



FHE holds huge potential to transforming privacy

Finally “practical” - Real world use of FHE started to emerge

) zawva
NuCypher

Microsoft Edge O |
Password Monitor Duality




Developing FHE Applications is
Notoriously Hard



Usable FHE

Advanced Programming
Cryptography Languages



Usable FHE

Advanced Programming
Cryptography Languages

“ What makes developing FHE applications hard?

g How can compilers address these complexities?
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- How do we optimize f



—— Functionality and performance

depend on f’s representation:
e Bl FHE Schemes

- How do we express f

- How do we optimize f

Optimizing this transformation yields
better FHE efficiency



FHE Programming Paradigm

L. =@ FH A

Approximations Optimizations No If/Else

fu

SIMD Batching



Data Independence

g @&

int foo(int a, int b) { int foo(int a, int b) {
if(a < b) { int ¢ = a < b;
return a * b; int i = a * b;
} else { int e = a + b;
return a + b; return c*i + (1-c)*e;
}
¥ }

Always worst-case performance



SIMD-like Parallelism

SIMD Batching

Standard C++ Batched FHE

I fu

int foo(int[] x,int[] y){ int foo(int[] a,int[] b){
int[] r; return a * b;
for(i =0; i < 6; ++i){
rli] = x[i] * y[i] }
}
return r;

Could get orders-of-magnitude performance
difference between different batching schemes.
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Complex Design Space

Polynomial Functions Arbitrary Computation
Schemes: BFV, 7.2‘6 +x _IZ_} v Schemes: FHEW, TFHE
BGV, CKKS

f Q ~1 Oo+|\/; ;|;)WdOWﬂ
N %,
D9 XK

—O0—

Parameter Selection Cost Model




Performance

Programming
Paradigm

Compilers

More complex than overhead of underlying FHE operations

Wide gap between naive implementations & expert solutions

Transform high level programs to efficient FHE circuits



Democratizing Fully Homomorphic Encryption

Automatically generate
efficient and secure FHE

I (I) ++i
{
) 5 VT for any custom workloads?

Developer with no
crypto expertise



HECO

FHE Paradigm
Transform high-level programs to efficient
FHE solutions

void hd(vector<bool>u,
vector<bool>v)

{
int sum = 9;
for(int i = 0;
i< v.size();
++1)

{

sum += (v[i]!=u[i]);
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vector<sbool>v)

{
sint sum = 0;
for(int i = 0;
i< v.size();
++1)

{

sum += (v[i]!=u[i]);




HECO

FHE Paradigm Architecture
Transform high-level programs to efficient End-to-end compilation stack for FHE
FHE solutions

Application

void hd(vector<sbool>u,
vector<sbool>v)
{

sint sum = 0;
for(int i = 0;

Circuits

i< v.size();
++1)

{

sum += (v[i]!=u[i]);

Schemes CKKS, TFHE, BGV, BFV,

Platforms ﬁ




HECO

FHE Paradigm Architecture
Transform high-level programs to efficient End-to-end compilation stack for FHE

FHE solutions

A
void hd(vector<sbool>u, Appllca’[lon
vector<sbool>v)
{
sint sum = 0; . .
for(int i = 0; Circuits
i< v.size();
++1)
{ — Schemes CKKS, TFHE, BGV, BFV,
sum += (v[i]l=u[i]);
Platforms ﬁ }

uoneziundQ orewoiny 323



What's Next?



Domain Specific Language

Extensible FHE Compiler

Program Transformation

HE Operations

URORCRA
Virtual Operations

Ge

insert extract

Circuit Optimizations
BFV, BGV, CKKS, ..

Q ® Q

add_ctxt sub_ctxt mul_ctxt  galois
add_plain  sub_plain  mul_plain

Crypto Optimization

keyswitching,
digitdecomposition,
NTT, ..

Execution Targets

FHE Libraries
(e.g. SEAL)

HECO

open source, automated end-to-
end optimization for FHE
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Cryptographic Primitives for FHE Verification

Execution Targets

FHE Libraries
(e.g. SEAL)

HECO

open source, automated end-to-
end optimization for FHE

Cryptography : Primitives for Verifiable Computation



Domain Specific Language

Extensible FHE Compiler

Program Transformation|| Circuit Optimizations Crypto Optimization

HE Operations BFV, BGV, CKKS, ..

PO ®J + - * 2 keyswitching,
ad s it apmin  aain mn digitdecomposition,
Virtual Operations NTT, ..
2 (&

i ineraize ~ resca le bootstra
insert extract relineraize p

Cryptographic Primitives for FHE Verification

Execution Targets

FHE Libraries
(e.g. SEAL)

FHE Hardware

CPU/GPU Code Accelerators

HECO

open source, automated end-to-
end optimization for FHE

Cryptography : Primitives for Verifiable Computation

Systems: Target HW directly, generating code for
CPU/GPU, upcoming dedicated FHE accelerators
and heterogenous deployments using a mix of these.



End-to-End Privacy

Data with Heterogenous Privacy Restrictions

Pate Expo. sQL
Opacus PyDP GAN Mech. Engine
€,0 €,0
Private TF Priv Multlverse
Ektelo SQL Privacy Bayes RAPPOR
€, 0 €,0 €,0

Diverse Data Consumers




End-to-End Privacy

Privacy Management —

Data with Heterogenous Privacy Restrictions

1©

Privacy Control Logic
Purpose Limitation - Data Minimization - Auditing - Deletion

Pate
Opacus PyDP GAN
€,0 €,0

Privacy Management

Expo. sSQL
Mech. Engine

Private TF
Ektelo SQL Privacy
€, 0 €,0

E

Priv RAPPOR Multlverse
Bayes
€,0

Diverse Data Consumers



End-to-End Privacy

Data with Heterogenous Privacy Restrictions

1©

Privacy Management == _ Privacy Control Logic

Purpose Limitation - Data Minimization - Auditing - Deletion

Privacy Management

=
. €0 €,0

Cryptographically

oty G SllslEl=E

Diverse Data Consumers



Secure and Robust Collaborative Learning

Z Coordinator

- &
&
==

w . am [IE

Secure Decentralized Learning Secure Federated Learning




Secure and Robust Collaborative Learning

Ha

}
N
AN

S g O

Secure Decentralized Learning Secure Federated Learning

Problem: Model integrity

Coordinator




Retrofit privacy in the fabric of modern systems

Systems

Cryptography Privacy

Privacy-preserving, functional, and performant systems



End.



