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Data Misuse 
use of data for purposes that 
the user did not agree to
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Time-ordered observations of a quantitative characteristic of an 
individual or phenomenon taken at successive points in time.
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Time Series Databases 

Time Series Workloads Performance Requirements 
§ Primarily INSERTS to recent time interval
§ Statistical queries over time ranges
§ Single writer 

§ High throughput writes 
§ Data compaction (aging out data)
§ Scale with data volume and velocity
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ServicesData Sources

Cryptographic Access Control 

Time 

Doctor

Health Insurance

Policy(  )

Monthly Resolution

Support time series access control semantics
Time Resolution Attribute

Policy(  )

Duration of Sickness



Functionalities Statistical queries and lifecycle operations over encrypted data

TimeCrypt
Encrypted Time Series Database that enables scalable computation over 

large volumes of encrypted time series data. 

Cryptographic 
Access Control Fine-grained access policies over time, resolution, and attributes

Security Data Secrecy -- Homomorphic Encryption 
Function Integrity -- Homomorphic MACs

Efficiency Interactive queries over large scale data



Large-Scale Challenges 

Lots of Data: Fine-grained Access Control:
Supporting “big data” 

computations 
Scalability as data and the 

number of data consumers grow

E.g., Attribute Based Encryption [KP-ABE]E.g., Partial Homomorphic Encryption [Paillier]
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Solution that supports both fine-grained access control 
and computations over large-scale encrypted data

Lots of Data: Fine-grained Access Control:
Supporting “big data” 

computations 
Scalability as data and the 

number of data consumers grow

E.g., Attribute Based Encryption [KP-ABE]E.g., Partial Homomorphic Encryption [Paillier]
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Efficiency Additive Symmetric Homomorphic Encryption [Castelluccia]

Expressiveness Aggregatable Digests

Access Control

Building Blocks

Known encodings: If we can compute sum privately, then we can compute f(·) privately 

Binary hash tree

time

hashl() hashr() shared keys
KDF
hash functions

shared token

t0 t7

New Key Derivation Construction

§ Key Identifiers à Time-encoded key-streams§ Dec. cost O(n) à Key cancelling O(1) 



TimeCrypt System Architecture 
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HECO
[In Submission]

FHE Compilers
[IEEE S&P’21]

My Research: 

E2E 
Security

E2E 
Privacy

RoFL
[In Submission]

Talos & Pilatus
[SenSys’15 & ‘17]

Droplet
[Usenix Sec’20]

TimeCrypt
[Usenix NSDI’20]

Zeph
[Usenix OSDI’21] Privacy 

Enforcement

Functionality & 
Performance

Robustness

Accessibility

Building practical systems that use cryptography to empower users 
and preserve their privacy & tools to democratize cryptography



Fully Homomorphic Encryption Accessibility  

Advanced 
Cryptography 

Programming 
Languages

(IEEE S&P ‘21)



Microsoft Edge 
Password Monitor

Finally “practical” - Real world use of FHE started to emerge

FHE holds huge potential to transforming privacy



Developing FHE Applications is 
Notoriously Hard



Advanced 
Cryptography 

Programming 
Languages

Usable FHE



Advanced 
Cryptography 

Programming 
Languages

Usable FHE

1

2

What makes developing FHE applications hard?

How can compilers address these complexities?



Functionality and performance 
depend on 𝒇’s representation:

- How do we express 𝒇

- How do we optimize 𝒇

void hd(vector<sbool>u,           
vector<sbool>v)

{
sint sum = 0;
for(int i = 0;

i < v.size();
++i)

{
sum += (v[i]!=u[i]);
}

} 

𝒇 FHE Schemes



Functionality and performance 
depend on 𝒇’s representation:

- How do we express 𝒇

- How do we optimize 𝒇

void hd(vector<sbool>u,           
vector<sbool>v)

{
sint sum = 0;
for(int i = 0;

i < v.size();
++i)

{
sum += (v[i]!=u[i]);
}

} 

𝒇 FHE Schemes

Optimizing this transformation yields 
better FHE efficiency 



FHE Programming Paradigm 

No If/Else No LoopsApproximations Optimizations SIMD Batching



Data Independence

No If/ElseNo LoopsNo Jumps

int foo(int a, int b) {

if(a < b) {

return a * b;
} else {

return a + b;
}

}

Standard C++
int foo(int a, int b) {

int c = a < b;

int i = a * b;
int e =  a + b;

return c*i + (1-c)*e;

}

FHE

Always worst-case performance



int foo(int[] x,int[] y){

int[] r;

for(i = 0; i < 6; ++i){
r[i] = x[i] * y[i]

}
return r;

}

Standard C++
int foo(int[] a,int[] b){

return a * b;

}

Batched FHE

SIMD-like Parallelism

SIMD Batching

Risk Score

Could get orders-of-magnitude performance 
difference between different batching schemes.
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Schemes: FHEW, TFHE



Performance More complex than overhead of underlying FHE operations

Programming 
Paradigm Wide gap between naïve implementations & expert solutions

Compilers Transform high level programs to efficient FHE circuits



Democratizing Fully Homomorphic Encryption 

Developer with no 
crypto expertise 

void hd(vector<sbool>u,           
vector<sbool>v)

{
sint sum = 0;
for(int i = 0;

i < v.size();
++i)

{
sum += (v[i]!=u[i]);
}

} 

Automatically generate 
efficient and secure FHE 

for any custom workloads?



FHE Paradigm
Transform high-level programs to efficient 

FHE solutions
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Architecture 
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vector<sbool>v)

{
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{
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What’s Next?
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FHE Libraries 
(e.g. SEAL)

Program Transformation

Virtual Operations

+ - *add sub mul rot

insert extract

Extensible FHE Compiler

Domain Specific Language

HE Operations

Circuit Optimizations
BFV, BGV, CKKS, …

-+
add_ctxt
add_plain

sub_ctxt
sub_plain

*mul_ctxt
mul_plain

galois

M
rescale

modswitch

R
relineraize

B
bootstrap

Crypto Optimization

keyswitching,
digitdecomposition,

NTT, …

Execution Targets

Cryptographic Primitives for FHE Verification

CPU/GPU Code FHE Hardware 
Accelerators

Cryptography : Primitives for Verifiable Computation 

Systems: Target HW directly, generating code for
CPU/GPU, upcoming dedicated FHE accelerators
and heterogenous deployments using a mix of these.

HECO
open source, automated end-to-

end optimization for FHE 
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End-to-End Privacy

Privacy Control Logic
Purpose Limitation - Data Minimization - Auditing - Deletion 

Data with Heterogenous Privacy Restrictions

Diverse Data Consumers

Privacy Management                             
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Privitar
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Multiverse 
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Privacy
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Cryptographically 
Enforced Privacy 

Privacy Management 



Secure and Robust  Collaborative  Learning 

(Coordinator

𝑤
𝚫𝑤

Secure Decentralized  Learning Secure Federated Learning 



Secure and Robust Collaborative  Learning 

(Coordinator

𝑤
𝚫𝑤

Problem: Model integrity

Secure Decentralized  Learning Secure Federated Learning 



Retrofit privacy in the fabric of modern systems 

Privacy-preserving, functional, and performant systems

Systems

PrivacyCryptography



End.


