System Designs for End-to-End Privacy Functionality, Performance, & Accessibility

Anwar Hithnawi

Based on joint work with: Lukas Burkhalter, Alexander Viand, Nicolas Kuechler, and Hidde Lycklama.

Data Driven World 79 ZB

181 ZB

Sensitive Data

Morgan Stanley settles personal data breach lawsuit for \$60 million

Data Breaches Keep Happening. So Why Don't You Do Something?

A

T

Capital One Data Breach Compromises Data of Over 100 Million

All 3 Billion Yahoo Accounts Were Affected by 2013 Attack

The Government Uses 'Near Perfect Surveillance' Data on Americans

Congressional hearings are urgently needed to address location tracking.

By THE EDITORIAL BOARD

Grindr and OkCupid Spread Personal Details, Study Says

Norwegian research raises questions about whether certain of sharing of information violate data privacy laws in Europ the United States.

You Should Be Freaking Out About Privacy

Nothing to hide, nothing to fear? Think again.

Technology

Data broker shared billions of location records with District during pandemic

The bulk sales of location data have fueled a debate over public health and privacy

~ 1.245 Billion

The number of data records **stolen** in 2020

Where the sensitive information is concentrated, that is where the spies will go. This is just a fact of life. ?? former NSA official Ken Silva.

Where the sensitive information is concentrated, that is where the spies will go. This is just a fact of life. ?? former NSA official Ken Silva.

Software Vulnerabilities

Insider Threats

Physical Attacks

More Applications?

data in transit secure communication

data in transit secure communication

data in transit secure communication

data at rest secure storage End-to-End Security data in use data in transit secure communication secure computation

Fully Homomorphic Encryption

Enables computation on encrypted data

Fully Homomorphic Encryption

Enables computation on encrypted data

Delegate the processing of data without giving away access to it

40 Years of FHE History

40 Years of FHE History

40 Years of FHE History

FHE is not yet practical for many applications but will soon be practical for a wider set of applications...

FHE is not yet practical for many applications **but** will soon be practical for a wider set of applications...

. . .

. . .

. . .

Privacy protection means more than securing the data ...

Data Misuse

use of data for purposes that the user did not agree to

Fundamental issue: **unrestricted** views of the data

End-to-End Encrypted Systems → End-to-End Privacy

privacy enhanced

Fundamental issue: unrestricted views of the data

End-to-End Encrypted Systems → End-to-End Privacy

privacy enhanced

Fundamental issue: unrestricted views of the data

Data Minimization

Purpose Limitation

End-to-End Security → End-to-End Privacy

End-to-End Security -> End-to-End Privacy

data confidentiality unauthorized parties

End-to-End Security -> End-to-End Privacy

data confidentiality unauthorized parties

strong privacy guarantees authorized parties My Research: Building practical systems that use cryptography to empower users and preserve their privacy & tools to democratize cryptography

Zeph (Usenix OSDI '21)

User-centric Model for Privacy

One of Many Scenarios

Privacy Transformation

"Daily popular running tracks"

Day 6

One of Many Scenarios

2:13 Back

Metro and Heatmap

::!! 🗢 💷

Include your activities in Metro

and Heatmap We realize that your privacy is of utmost importance when sharing your information, and we've taken precautions to protect it. Metro and Heatmap display aggregate data about where athletes have recorded activities. These aggregate data sets do not include private activities or portions of activities within your privacy zones. Learm more

Why contribute?

Because Strava Metro and the Global Heatmap make running and riding in cities better. Metro displays aggregate Strava data to inform urban planners and advocacy groups about human-powered transportation trends. The Global Heatmap, powered exclusively by contributions from athletes like you, is one of the world's best free resources for route and trail discovery.

The Strava Metro data set is made exclusively for urban planners and active transportation advocates. When <u>stro</u>,

we rer activiti baserr STRAVA dual ata

about now many cyclists rode in which direction on a given street hour-by-hour, but no information about which cyclists rode on that street.

Home Maps Record Groups You

Privacy Transformation

- Temporal
- Spatial
- Population

"Daily popular running tracks"

Day 6

X End-to-End Security X Enforcement

Existing End-to-End Encrypted Streaming Pipeline

Existing End-to-End Encrypted Streaming Pipeline

Existing End-to-End Encrypted Streaming Pipeline

Integrate Privacy Controls into Existing Pipelines

Integrate Privacy Controls into Existing Pipelines

Integrate Privacy Controls into Existing Pipelines

State-of-the-art

State-of-the-art

1. <u>Compatibility</u> with Existing Systems

$\blacktriangle \to Enc(\blacktriangle, \ref{}) \to \ref{} \to f(\ref{})$

$$\blacktriangle \to Enc(\blacktriangle, \ref{}) \to \ref{}_{\frown} \to f(\ref{}_{\frown}) \to Dec(\ref{}_{\bullet}, \ref{})$$

$\mathbf{P} \to f'(\mathbf{P})$

$$\stackrel{\text{Unfettered view}}{\longrightarrow} \text{of the data} \xrightarrow{\checkmark} f(\bigtriangleup) \rightarrow Enc(\bigstar, \ref{eq:second}, \ref{eq:second},$$

$$\mathbf{P} \to f'(\mathbf{P}) \to \mathbf{O}$$

Zeph's Threat Model and Assumptions

Privacy Transformations

Existing Privacy Transformations

Privacy Models -orma

Existing Privacy Transformations

Models Privacy -orma

Privacy Transformations

Models rivacy Ω Formal

 $\left| \mathsf{T}'(\cdot) \right| = \left| \sum \right|$

Privacy Transformations

Models rivacy Ω Formal

Additive Homomorphic Privacy Transformations

Additive Homomorphic Privacy Transformations

Additive Homomorphic Privacy Transformations

Enable Federated Privacy Control

"multiple Data Producers - one Privacy Controller"

Enable Federated Privacy Control

"multiple Data Producers - multiple Privacy Controllers"

Enable Federated Privacy Control

"multiple Data Producers - multiple Privacy Controllers"

Zeph Implementation and Evaluation

Zeph Implementation and Evaluation

Zeph Implementation and Evaluation

Web Analytics: End-to-End Benchmark

Web Analytics: End-to-End Benchmark

My Research: Building practical systems that use cryptography to empower users and preserve their privacy & tools to democratize cryptography

TimeCrypt (Usenix NSDI '20) Encrypted Time Series Database

Can we enable encrypted data processing for time series workloads?

Can we enable encrypted data processing for time series workloads?

Large Scale

Low-Latency

Time Series Data why how many Many Market Ma

Time-ordered observations of a quantitative characteristic of an individual or phenomenon taken at successive points in time.

Financial

Health Monitoring

Smart Grid

Internet of Things

DevOps/Telemetry 210

Time Series Data

Time-ordered observations of a quantitative characteristic of an individual or phenomenon taken at successive points in time.

high resolution sensitive data!

Financial

Health Monitoring

Smart Grid

Internet of Things

Time Series Databases

Time Series Workloads

- Primarily INSERTS to recent time interval
- Statistical queries over time ranges
- Single writer

Performance Requirements

- High throughput writes
- Data compaction (aging out data)
- Scale with data volume and velocity

Data Sources

Services

TS Access Control Semantics

Data Sources

Data Sources

The services learned more than they needed!

Data Sources

The services learned more than they needed!

Data Sources

Time

Services

Support **time series** access control semantics Time Resolution Attribute

TimeCrypt

Encrypted Time Series Database that enables scalable computation over large volumes of encrypted time series data.

Functionalities	Statistical queries and lifecycle operations over encrypted data
Cryptographic	
Access Control	Fine-grained access policies over time, resolution, and attributes
Security	Data Secrecy Homomorphic Encryption Function Integrity Homomorphic MACs
Efficiency	Interactive queries over large scale data

Large-Scale Challenges

Lots of Data:

Supporting "big data" computations

Fine-grained Access Control:

Scalability as data and the number of data consumers grow

E.g., Partial Homomorphic Encryption [Paillier]

E.g., Attribute Based Encryption [KP-ABE]

Large-Scale Challenges

Lots of Data:

Supporting "big data" computations

Fine-grained Access Control:

Scalability as data and the number of data consumers grow

E.g., Partial Homomorphic Encryption [Paillier]

E.g., Attribute Based Encryption [KP-ABE]

Solution that supports both fine-grained access control and computations over large-scale encrypted data

Efficiency	 Additive Symmetric Homomorphic Encryption [Castelluccia] Dec. cost O(n) → Key cancelling O(1) Key Identifiers → Time-encoded key-streams
Expressiveness	Aggregatable Digests

Efficiency	 Additive Symmetric Homomorphic Encryption [Castelluccia] Dec. cost O(n) → Key cancelling O(1) Key Identifiers → Time-encoded key-streams
Expressiveness	Aggregatable Digests Known encodings: If we can compute sum privately, then we can compute $f(\cdot)$ privately
	digest ← vector of encodings of the underling data

Efficiency	 Additive Symmetric Homomorphic Encryption [Castelluccia] Dec. cost O(n) → Key cancelling O(1) Key Identifiers → Time-encoded key-streams
Expressiveness	Aggregatable Digests Known encodings: If we can compute sum privately, then we can compute $f(\cdot)$ privately
	digest ↓ vector of encodings of the underling data Statistical queries: average, sum, count, variance, min/max, histograms, least-squares regression, stochastic gradient descent, heavy hitters

Efficiency	 Additive Symmetric Homomorphic Encryption [Castelluccia] Dec. cost O(n) → Key cancelling O(1) Key Identifiers → Time-encoded key-streams
Expressiveness	Aggregatable Digests Known encodings: If we can compute sum privately, then we can compute $f(\cdot)$ privately
	digest ← vector of encodings of the underling data Statistical queries: average, sum, count, variance, min/max, histograms, least-squares regression, stochastic gradient descent, heavy hitters

Efficiency	 Additive Symmetric Homomorphic Encryption [Castelluccia] Dec. cost O(n) → Key cancelling O(1) Key Identifiers → Time-encoded key-streams
Expressiveness	Aggregatable Digests Known encodings: If we can compute sum privately, then we can compute $f(\cdot)$ privately
Access Control	New Key Derivation Construction

TimeCrypt System Architecture

Ingest

Ingest

Ingest

My Research: Building practical systems that use cryptography to empower users and preserve their privacy & tools to democratize cryptography

Fully Homomorphic Encryption Accessibility (IEEE S&P '21)

FHE holds huge potential to transforming privacy

Finally "practical" - Real world use of FHE started to emerge

Microsoft Edge Password Monitor

Developing FHE Applications is Notoriously Hard

Usable FHE

Usable FHE

What makes developing FHE applications hard?

How can compilers address these complexities?

Functionality and performance depend on f's representation:

- How do we express **f**
- How do we optimize *f*

Functionality and performance depend on f's representation:

- How do we express *f*
- How do we optimize *f*

Optimizing this transformation yields better FHE efficiency

FHE Programming Paradigm

Data Independence

Standard C++	FHE
<pre>int foo(int a, int b) {</pre>	<pre>int foo(int a, int b) {</pre>
if(a < b) { return a * b; } else { return a + b; }	<pre>int c = a < b; int i = a * b; int e = a + b; return c*i + (1-c)*e;</pre>
}	}

Always worst-case performance

SIMD-like Parallelism

Standard C++	Batched FHE
<pre>int foo(int[] x,int[] y){</pre>	<pre>int foo(int[] a,int[] b){</pre>
<pre>int[] r; for(i = 0; i < 6; ++i){ r[i] = x[i] * y[i] } return r; }</pre>	return a * b; }

Could get orders-of-magnitude performance difference between different batching schemes.

Complex Design Space

2

Polynomial Functions

Schemes: BFV, BGV, CKKS

Complex Design Space

Polynomial Functions

Schemes: BFV, BGV, CKKS

Arbitrary Computation

Schemes: FHEW, TFHE

Complex Design Space

Polynomial Functions

Schemes: BFV, BGV, CKKS

Arbitrary Computation

⊅D- 1D-+ ×

Schemes: FHEW, TFHE

Performance More complex than overhead of underlying FHE operations

Programming Paradigm Wide

Wide gap between naïve implementations & expert solutions

Compilers Transform high level programs to efficient FHE circuits

Democratizing Fully Homomorphic Encryption

	<pre>void hd(vector<\$bool>u, vector<\$bool>v) { sint sum = 0; for(int i = 0; i < v.size(); ++i) { sum += (v[i]!=u[i]); } }</pre>
L	

Automatically generate efficient and secure FHE for any custom workloads?

FHE Paradigm Transform high-level programs to efficient FHE solutions

FHE Paradigm Transform high-level programs to efficient FHE solutions

FHE Paradigm Transform high-level programs to efficient FHE solutions

Architecture

End-to-end compilation stack for FHE

FHE Paradigm Transform high-level programs to efficient FHE solutions

Architecture

End-to-end compilation stack for FHE

What's Next?

Domain Specific Language

HECO

open source, **automated** end-toend optimization for FHE

Execution Targets

FHE Libraries
 (e.g. SEAL)

Domain Specific Language

Extensible FHE Compiler Circuit Optimizations Crypto Optimization Program Transformation **HE Operations** BFV, BGV, CKKS, ... Ð keyswitching, (*)(-) (\mathbf{J}) (-) (*) add_ctxt add_plain sub_ctxt mul_ctxt sub_plain mul_plain galois digitdecomposition, Virtual Operations NTT, ... R B E B rescale relineraize bootstrap insert extract modswitch

Cryptographic Primitives for FHE Verification

HECO

open source, **automated** end-toend optimization for FHE

Cryptography : Primitives for Verifiable Computation

Execution Targets

FHE Libraries (e.g. SEAL)

Domain Specific Language

HECO

open source, **automated** end-toend optimization for FHE

Cryptography : Primitives for Verifiable Computation

Systems: **Target HW directly**, generating code for CPU/GPU, upcoming dedicated FHE accelerators and heterogenous deployments using a mix of these.

End-to-End Privacy

Data with Heterogenous Privacy Restrictions

Diverse Data Consumers

End-to-End Privacy

Data with Heterogenous Privacy Restrictions

Diverse Data Consumers

Diverse Data Consumers

Secure and Robust Collaborative Learning

Secure Decentralized Learning

Secure Federated Learning

Secure and Robust Collaborative Learning

Problem: Model integrity

Secure Decentralized Learning

Secure Federated Learning

Retrofit privacy in the fabric of modern systems

Privacy-preserving, functional, and performant systems

End.