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large, diverse data === broad generalization



... however, many important tasks we
care about ...

Inaccessible

Health — Cancer, Alzheimer, Dementia, Depression
Finance — Economic growth, Market predictions
Government — Education, Taxes, Immigration, Income
Personal Data — Text Messages, Emails, Photos

= EU Data Governance Act (DGA )iccive rom 2023

facilitate the reuse of protected public-sector data

5= 3207 Datasilos
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:::Ej Y, Ej ) - Privacy Laws
Ej @ - Competition

Legal Frameworks and Technologies
to facilitate privacy preserving access



Collaborative Learning
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Adversarial Machine Learning
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= Adversarial Examples (perturbations) /Deploy
=  Model extraction/inversion attacks
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Clients

Security and Privacy of Collaborative ML

Train

= adversarial examples (perturbations)
»  model extraction/inversion attacks
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Cryptography - Secure Computation
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Secure Decentralised Learning

= CryptoNets [Gilad-Bachrach et al. ICML'16]
= SecureML [Mohassel et al. S&P’18]

= EzPC [Chandran et al. EuroS&P’19]

= Helen [Zheng et al. S&P’19]

= Spindle [Froelicher et al. PETS’20]

= Cerebro [Zheng et al. USENIX Security’21]

CQEIEI

Secure Federated Learning

= Secure Aggregation [Bonawitz et al. CCS’'17]
» FastSecAgg [Kadhe et al. CCS Workshop PPML’20]
= SecAgg+ [CCS’20]
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Use existing crypto building blocks with careful consideration of performance!

Replace existing ML algorithms with cryptography-friendly ones
(e.q., low degree polynomial, approximate functions)



Robustness - Malicious Clients
Can Amplify Robustness Issues
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Collaborative Learning

Can Amplity Robustness Issues

Open Nature

2

Attacker Capabilities

Detectability
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Adversarial Robustness — Training
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Adversarial Robustness — Training

/ Data Poisoning \

(adversary controls training data)
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Data Poisoning

Secure Federated Learning
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Adversarial Robustness — Training
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Adversarial Robustness — Training
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Secure Federated Learning
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Adversarial Robustness — Training
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Adversarial Robustness — Training
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Adversarial Robustness — Training
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Adversarial Robustness — Training
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Robust ML Algorithms

cryptography-friendly
algorithms

Detection Mechanisms

assumes direct access to the
data or the gradients

Cryptography
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Cryptographic Verification

Zero-knowledge proofs, Cryptographic commitments, Proofs for program delegations, ...

Machine Learning Setting

In ML f is learned
(f = unknown ground truth)

Given P(X)
-- Verify what then?

/ \

The source of the issue is maliciously chosen data

—> alteration, proof/verify something about the input data, gradients, or data distribution
» Theoretical work: Verify data distribution (in/out/adversarial)
= Enforce constrains on the gradient updates (e.g., norm bound)
= Verify Source of Data



Overview Wrap Up

» Decoupling data from training, by itself, does not provide many privacy benetfits
= Encryption can help (e.g., secure aggregation, MPC)

= More work on robust ML in the encrypted settings
= Cryptography friendly robust ML algorithms
= Use cryptography (e.g., verification, ZKP) to minimize influence of maliciously chosen training data

» Post-Deployment

= Can we get robustness against all attacks? Answer: A perfect solution to adversarial robustness
remains an open challenge — imperfect defenses, cat-and-mouse game, more powerful attacks

» There is a need for solutions that minimize consequences of attacks at deployment time — e.g.,
attribution, forensics, accountability, audits, admission controls, monitoring ...



RoFL: Robustness of Secure Federated Learning
IEEE S&P’23

Understand
Vulnerabilities in FL




Adversarial Clients
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Adversarial Clients
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Problem: Linear aggregation rules are vulnerable

to Byzantine behavior

average + malicious

Machine Learning:
Byzantine-Robust Distributed Learning

- Krum [Blanchard et al. NeurlPS’17]

- Trimmed Mean [Yin et al. ICML’18]

- Coordinate-wise Median [Yin et al. ICML'18]

- Bulyan [Mhamdi et al. ICML’18]

- ByzantineSGD [Alistarh et al. NeurlPS'18]

- Redundant Workers and Coding Theory [Chen et al. ICML’18,
Rajput et al. NeurlPS’19]

Security:
Private Data-Collection Systems

- Prio [Corrigan-Gibbs et al. NSDI'17]
- PrivStats [Popa et al. CCS'11]

- SplitX [Chen et al. SIGCOMM’13]

- P4P [Duan et al. USENIX Security’10]
- Privex [Elahi et al. CCS’'14]

- Zero Knowledge Proofs: client proves that its submission is well-formed

41




A well-formed Client Submission in Federated Learning



Norm bound

f?

19‘“ ~lue

&Q&Qﬁ@&!«&&&
Smgiemm Attacker (round 5)
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|s the norm bound actually etfective?

How To Backdoor Federated Learning

Can You Really Backdoor Federated Learning?

Attack of the Tails:
Yes, You Really Can Backdoor Federated Learning

Bagdasaryan et al., How fo backdoor Federated Learning, AISTATS 2020
Sun et al., Can you really backdoor federated learning?, Federated learning workshop at NeurlPS 2019
Wang et al., Attack of the Tails: Yes, You Really Can Backdoor Federated Learning, NeurlPS 2020
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Model Capacity Implications on

Privacy ...

Prefix 7 R
East Stroudsburg Stroudsburg... ]
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at one end

.com
+ 75

Fax: +
|\

7

Memorization leads to leakage of private text

Fig Left — Carlini et al., Extracting Training Data from Large Language Models, USENIX Security 2021.

47
Fig Right — Tramer, From average-case to worst-case privacy leakage in neural networks”, talk at Privacy and Security in ML Interest Group, 2022.



Model Capacity Implications on Robustness...



Analysis: Understanding FL Robustness

~= [ Adaptive attacks

' MP-PD: Projected Gradient Descent [Sun et al., FLDPC@Neur|PS'19]
@ < . |
MP-NT: Neurotoxin [Zhang et al., ICML'22]

(Client L MP-AT: Anticipate [Wen et al., AdvML@ICML’22]
Considered:
Attack Number of Bound Pixel-Pattern Untargeted

Objective Attackers Selection Backdoors Attacks




Impact of Attack Objective on Backdoor Attacks
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Impact of Attack Objective on Backdoor Attacks
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Suppressing the Long-Tail

Approaches

« Noise Addition
(Differential Privacy)

« Compression

# Samples

R e e
Prototypical Tail

Understand trade-offs between
objectives we care about

O ©

Robustness Accuracy Fairness Privacy

52



Norm Bound Provides Practical Robustness Guarantees

# Samples

L.
Rz)undsI I I
Single-shot Attacker
99999

R:)und_sI
Continuous Attacker

Attack Target

8 @
E=  BIA

Prototypical Tail

effective

effective

... requires a strong attacker
that is consistently selected
and targets a tail sample

effective

not enough
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Hinges on it being efticiently realizable in the
secure setting ...
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Goal: Augment existing secure FL with Zero-Knowledge
Proofs to enforce constraints on model updates
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Secure Federated Learning
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RoFL Augments Secure Federated Learning
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Secure Aggregation

Goal: Compute zAWi=Aw+Aw+AW

ldea: Additive masks based on
pairwise secrets s;;

7”1+T2+7"3=O

where

Ty = S12 T 513
) = —S12 T S23
'3 = —S§13 = 823

+: modular addition

59
Bonawitz et al., Practical Secure Aggregation for Privacy-Preserving Machine Learning, CCS 2017.



Secure Aggregation

1. Mask distribution

. . . . . . . +: modular addition &0
Bonawitz et al., Practical Secure Aggregation for Privacy-Preserving Machine Learning, CCS 2017.



Secure Aggregation

Aw + 1

%
\ .
2. Aggregation
—> ®—> z(AWi+Ti)=ZAWi+2Ti
o) /
Aw + 13 %

Aw + 1,

. . . . . . . +: modular addition &1
Bonawitz et al., Practical Secure Aggregation for Privacy-Preserving Machine Learning, CCS 2017.



Secure Aggregation

3. Reconstruction

%
—> ‘ UnMask ‘ — 7'
Aw + 1, (ZAwi+Zri>—r’=zAwi

+: modular addition 62

Bonawitz et al., Practical Secure Aggregation for Privacy-Preserving Machine Learning, CCS 2017.



Limitation: Correctness with malicious clients

1. Key d|str|but|on

Aw+r1

. / ‘ ShareKeyS

B e

Aw+r2'n.

63



Insight: Checking Y'r; = r’ sufficient for correctness

1. Key distribution

% ‘ ShareKeys ‘

q 2. Aggregation

®—> E(Awi+ri)=ZAwi+Zri
Aw + Téq % 3. Reconstruction I
q ‘ UnMask ‘ — 7

Aw + 1,
v (ZAwi+Zri>—r’=zAwi
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Insight: Checking Y'r; = r’ sufficient for correctness

Enc(Aw, 1)
=2
-
%
Ze

Enc(Aw, 1r3)
o) @&

Enc(Aw, 1,)

1. Key distribution
‘ ShareKeys ‘

2. Aggregation

@ —> Z Enc(Aw;, ;) = EncQAw;, Y.17)
3. Reconstruction I
‘ UnMask ‘ — 7"

Dec(Enc(QAw;, ¥'ry), r') = z Aw;

65



Efficiency hinges on compatibility with zero-knowledge proofs

Protocol Requirements ZKP Requirements

_pl_
2.i Enc(Awy, 17) P2
Enc(};Aw;, Yi1y)

_pg_

Homomorphic in
messages and keys

Range proofs over
large vectors

Additively Homomorphic
Commitments

Q

N\’

N

\ s’

Correctness
check

Resource-constrained
devices
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Compatibility with Commitments

GGPR-style
zkSNARKs

Proof size
Prover time

Verification time

o)

0 (flog(?))
0(1)

Additively Homomorphic
Commitments

Encoding circuit

zkSNARKs

67



Compatibility with Commitments

EESFID\IRA_\;%E Bulletproofs
Proof size 0(1) 0(log(¥))
Prover time 0 (flog(?)) 0(%)
Verification time 0(1) 0(#)
Operates directly on additively %

homomorphic commitments



Extending Pedersen commitments for correctness

Protocol Commitment to _|_ Pedersen

Requirements Randomness Commitment Ll ~K" Requirements

gAWihTi

ElGamal commitment

* Server can compare Y g't gr'
« Clients generate non-interactive proof-of-knowledge to

proof well-formedness, i.e., r; is the same in (gAWihri,g’”i)
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Secure Aggregation with Input Constraints

Enc(Aw, 1)
=2

¢ = Enc(Aw,73), tzxpp (AW, 73)
5

Enc(Aw, 1r3)
Cc = EnC(AW Tz) TL'ZKRP(AW Tz)

Enc(Aw, 75)

¢ = Enc(Aw, 1), tzgpp (AW, 11)

2. Aggregation and Verification

( @ — ngWihTi = gZAWihZTi

<

\

Verify ZKRPCi(AWi, Ti){ci = gAWihri A\ ”AWl”p < B}

70




—nforcing Norm Bounds

L.-norm
Bounds each parameter individually
o '(gAwlhrl,grl)‘ _T[bprp(Awlxrl)_
> a > Pt (gAWZhTZ,gTZ) nbprp(AWZ:rz)
SEio S _(gAW{}hr{), grg)_ T hprp (Aw?,rt) ]

ElGamal commitments Bulletproof Range Proofs




Enforcing Norm Bounds

-Tl:bprp (AWl, 7'1)-
Tpprp (AW?, 7%)

LTl pprp (AW{), 7'#) 1

72



RoFL: End-To-

CIFAR-10 Model 273k Parameters Setup: 48 Clients, 160 rounds

Accuracy: 0.86

Time (min)

SecAgg
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Yx 11x
B =

-Nnd Performance

|—2 .|—2 Optimized Lo .I—oo Optimized
85 0.82 0.85 0.85
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RoFL: End-To-End Performance

Shakespeare Model 818k Parameters  Setup: 48 Clients, 20 rounds

Time (min)

. SecAgg L. . L., Optimized
Accuracy: 0.57 0.57 0.57

800 80 8.4x

700 D 5

600 g

N 40

500 —

400 o 0

200 -

100 g W

5 9 [

* Per client per round 74
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This work:

« Understanding FL Robustness
« RoFL: Secure Aggregation with Private Input Validation

Future work:

« Exploring additional client constraints for robustness
« Protocols with better bandwidth overhead
« Efficient ZKPs for resource-constrained provers

0 pps-lab/fl-analysis
O pps-lab/rofl-project-code

g pps-lab.com/research/ml-sec




