Security and Robustness of Collaborative Learning Systems

Anwar Hithnawi

Security and Robustness of Collaborative Learning Systems

New Challenges

of the collaborative learning paradigm

RoFL: Robustness of Secure FL

H. Lycklama, L. Burkhalter, A. Viand, N. Küchler, A. Hithnawi [IEEE SP'23]

Autonomous Driving

Health Care

Data Driven World

Object Classification

large, diverse data → broad generalization

Solving tasks where data is accessible...

Tasks

Public Data Crowdsourced Data

For example: web, books, articles, science, TV, corpus, audiobooks, ...

... however, many important tasks we care about ...

Inaccessible

Health – Cancer, Alzheimer, Dementia, Depression Finance – Economic growth, Market predictions Government – Education, Taxes, Immigration, Income Personal Data – Text Messages, Emails, Photos

→ EU Data Governance Act (DGA)_{effective from 2023} facilitate the reuse of protected public-sector data

Data Silos

- Privacy Laws
- Competition

Legal Frameworks and Technologies to facilitate privacy preserving access

Collaborative Learning

Collaborative Learning

Decentralized Learning

Collaborative Learning

Federated Learning

Decentralized Learning

Adversarial Machine Learning

Security and Privacy of Collaborative ML

Cryptography → Secure Computation

- FastSecAgg [Kadhe et al. CCS Workshop PPML'20]
 - SecAgg+ [CCS'20]

Spindle [Froelicher et al. PETS'20]Cerebro [Zheng et al. USENIX Security'21]

Helen [Zheng et al. S&P'19]

Cryptography -> Secure Computation

Use existing crypto building blocks with careful consideration of performance!

Replace existing ML algorithms with cryptography-friendly ones (e.g., low degree polynomial, approximate functions)

Final Model

Secure Decentralised Learning

- CryptoNets [Gilad-Bachrach et al. ICML'16]
- SecureML [Mohassel et al. S&P'18]
- EzPC [Chandran et al. EuroS&P'19]
- Helen [Zheng et al. S&P'19]
- Spindle [Froelicher et al. PETS'20]
- Cerebro [Zheng et al. USENIX Security'21]

- Secure Aggregation [Bonawitz et al. CCS'17]
- FastSecAgg [Kadhe et al. CCS Workshop PPML'20]
- SecAgg+ [CCS'20]

Robustness - Malicious Clients Can Amplify Robustness Issues

Collaborative Learning Can Amplify Robustness Issues

Open Nature

Attacker Capabilities

Detectability

Data Poisoning

Data Poisoning

Data Poisoning

Secure Decentralized Learning

Data Poisoning

(adversary controls training data)

Model Poisoning

(adversary controls model updates)

Secure Decentralized Learning

Secure Decentralized Learning

Robust ML AlgorithmsDetection MechanismsCryptographycryptography-friendly
algorithmsassumes direct access to the
data or the gradients?

Cryptographic Verification

Zero-knowledge proofs, Cryptographic commitments, Proofs for program delegations, ...

Conventional Setting

Verify some pre-specified function **f**

Given P(x)

-- Verify: P(x) = f(x)

Machine Learning Setting

In ML **f** is learned (f = unknown ground truth)

Given $P(\mathbf{x})$ -- Verify what then?

The source of the issue is maliciously chosen data

 \rightarrow alteration, proof/verify **something** about the input data, gradients, or data distribution

- Theoretical work: Verify data distribution (in/out/adversarial)
- Enforce constrains on the gradient updates (e.g., norm bound)
- Verify Source of Data

Overview Wrap Up

- Decoupling data from training, by itself, does not provide many privacy benefits
 - Encryption can help (e.g., secure aggregation, MPC)
- More work on robust ML in the encrypted settings
 - Cryptography friendly robust ML algorithms
 - Use cryptography (e.g., verification, ZKP) to minimize influence of maliciously chosen training data
- Post-Deployment
 - Can we get robustness against all attacks? Answer: A perfect solution to adversarial robustness remains an open challenge – imperfect defenses, cat-and-mouse game, more powerful attacks
 - There is a need for solutions that minimize consequences of attacks at deployment time e.g., attribution, forensics, accountability, audits, admission controls, monitoring ...

RoFL: Robustness of Secure Federated Learning IEEE S&P'23

Understand Vulnerabilities in FL

Cryptographically Enforce Constraints

Adversarial Clients

Adversarial Clients

Problem: Linear aggregation rules are vulnerable to Byzantine behavior

Machine Learning: Security: Byzantine-Robust Distributed Learning - Krum [Blanchard et al. NeurIPS'17]

- Trimmed Mean [Yin et al. ICML'18]
- Coordinate-wise Median [Yin et al. ICML'18]
- Bulyan [Mhamdi et al. ICML'18]
- ByzantineSGD [Alistarh et al. NeurIPS'18]
- Redundant Workers and Coding Theory [Chen et al. ICML'18, Raiput et al. NeurIPS'19]

Private Data-Collection Systems

- Prio [Corrigan-Gibbs et al. NSDI'17]
- PrivStats [Popa et al. CCS'11]
- SplitX [Chen et al. SIGCOMM'13]
- P4P [Duan et al. USENIX Security'10]
- PrivEx [Elahi et al. CCS'14]

 \rightarrow Zero Knowledge Proofs: client proves that its submission is well-formed

A well-formed Client Submission in Federated Learning

Norm bound

Is the norm bound actually effective?

How To Backdoor Federated Learning

Can You Really Backdoor Federated Learning?

Attack of the Tails: Yes, You Really Can Backdoor Federated Learning

Bagdasaryan et al., *How to backdoor Federated Learning,* AISTATS 2020 Sun et al., *Can you really backdoor federated learning?*, Federated learning workshop at NeurIPS 2019 Wang et al., *Attack of the Tails: Yes, You Really Can Backdoor Federated Learning,* NeurIPS 2020

Why?

Long Tail ...

CelebA Attribute % of Training Set

Fig: Hooker, Moorosi et al., 2020.

Model Capacity Implications on Privacy ...

Memorization leads to leakage of private text

Fig Left – Carlini et al., *Extracting Training Data from Large Language Models*, USENIX Security 2021. Fig Right – Tramer, From average-case to worst-case privacy leakage in neural networks", talk at Privacy and Security in ML Interest Group, 2022.

Model Capacity Implications on Robustness...

Analysis: Understanding FL Robustness

Adaptive attacks

MP-PD: Projected Gradient Descent [Sun et al., FLDPC@NeurIPS'19]

MP-NT: Neurotoxin [Zhang et al., ICML'22]

MP-AT: Anticipate [Wen et al., AdvML@ICML'22]

Impact of Attack Objective on Backdoor Attacks

Continuous Attacker

Prototypical Targets

Impact of Attack Objective on Backdoor Attacks

Tail Targets

Suppressing the Long-Tail

Approaches

- Noise Addition • (Differential Privacy)
- Compression

Leads to Fairness Problems

Differential Privacy disproportionately impacts underrepresented attributes

Understand trade-offs between objectives we care about

Robustness

Privacy

Norm Bound Provides Practical Robustness Guarantees

Hinges on it being efficiently realizable in the secure setting ...

RoFL: Robustness of Secure Federated Learning

Understand Vulnerabilities in FL

Cryptographically Enforce Constraints

Goal: Augment existing secure FL with Zero-Knowledge Proofs to enforce constraints on model updates

RoFL Augments Secure Federated Learning

Goal: Compute
$$\sum \Delta w_i = \Delta w + \Delta w + \Delta w$$

Idea: Additive masks based on pairwise secrets s_{ij}

$$r_1 + r_2 + r_3 = 0$$

where $r_1 = s_{12} + s_{13}$ $r_2 = -s_{12} + s_{23}$ $r_3 = -s_{13} - s_{23}$

+: modular addition

Bonawitz et al., *Practical Secure Aggregation for Privacy-Preserving Machine Learning*, CCS 2017.

Bonawitz et al., *Practical Secure Aggregation for Privacy-Preserving Machine Learning*, CCS 2017.

+: modular addition 60

Bonawitz et al., *Practical Secure Aggregation for Privacy-Preserving Machine Learning*, CCS 2017.

+: modular addition 61

Bonawitz et al., *Practical Secure Aggregation for Privacy-Preserving Machine Learning*, CCS 2017.

+: modular addition 62

Limitation: Correctness with malicious clients

Insight: Checking $\sum r_i = r'$ sufficient for correctness

1. Key distribution

ShareKeys

2. Aggregation $(+) \longrightarrow \sum (\Delta w_i + r_i) = \sum \Delta w_i + \sum r_i$ 3. Reconstruction UnMask $\left(\sum \Delta w_i + \sum r_i\right) - r' = \sum \Delta w_i$

Insight: Checking $\sum r_i = r'$ sufficient for correctness

Efficiency hinges on compatibility with zero-knowledge proofs

Compatibility with Commitments

	GGPR-style zkSNARKs	
Proof size	0(1)	
Prover time	$O(\ell \log(\ell))$	
Verification time	0(1)	

Compatibility with Commitments

	GGPR-style zkSNARKs	Bulletproofs
Proof size	0(1)	$O(\log(\ell))$
Prover time	$O(\ell \log(\ell))$	$O(\ell)$
Verification time	0(1)	$O(\ell)$
Operates directly on additively homomorphic commitments	×	

Extending Pedersen commitments for correctness

• Clients generate non-interactive proof-of-knowledge to proof well-formedness, i.e., r_i is the same in $(g^{\Delta w_i}h^{r_i}, g^{r_i})$

Secure Aggregation with Input Constraints

Enforcing Norm Bounds

Enforcing Norm Bounds

RoFL: End-To-End Performance

CIFAR-10 Model 273k Parameters Setup: 48 Clients, 160 rounds

RoFL: End-To-End Performance

Shakespeare Model 818k Parameters Setup: 48 Clients, 20 rounds

ETH zürich

This work:

- Understanding FL Robustness
- RoFL: Secure Aggregation with Private Input Validation

Future work:

- Exploring additional client constraints for robustness
- Protocols with better bandwidth overhead
- Efficient ZKPs for resource-constrained provers

 $[\Box [\Box S]$