RoFL: Robustness of Secure Federated Learning

Hidde Lycklama*

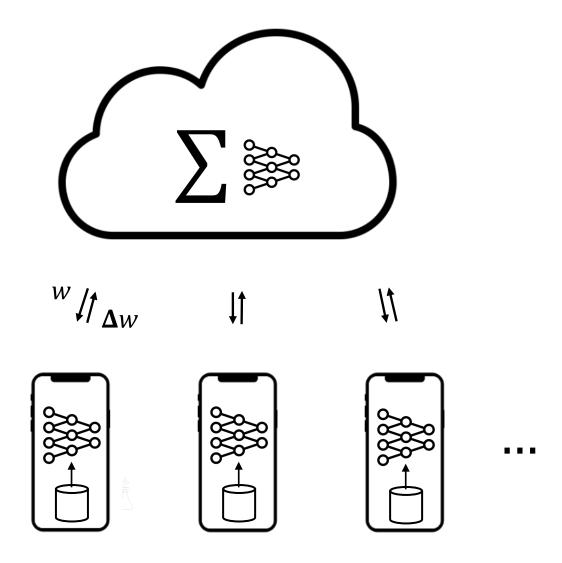
Lukas Burkhalter*

Alexander Viand

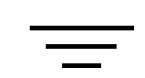
Nicolas Küchler

Anwar Hithnawi

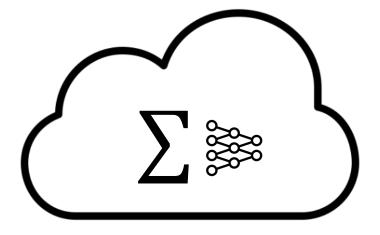
Federated Learning

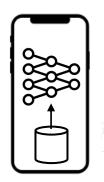


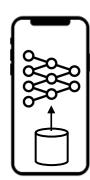
Federated Learning

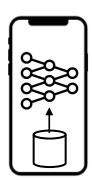


Data Minimization

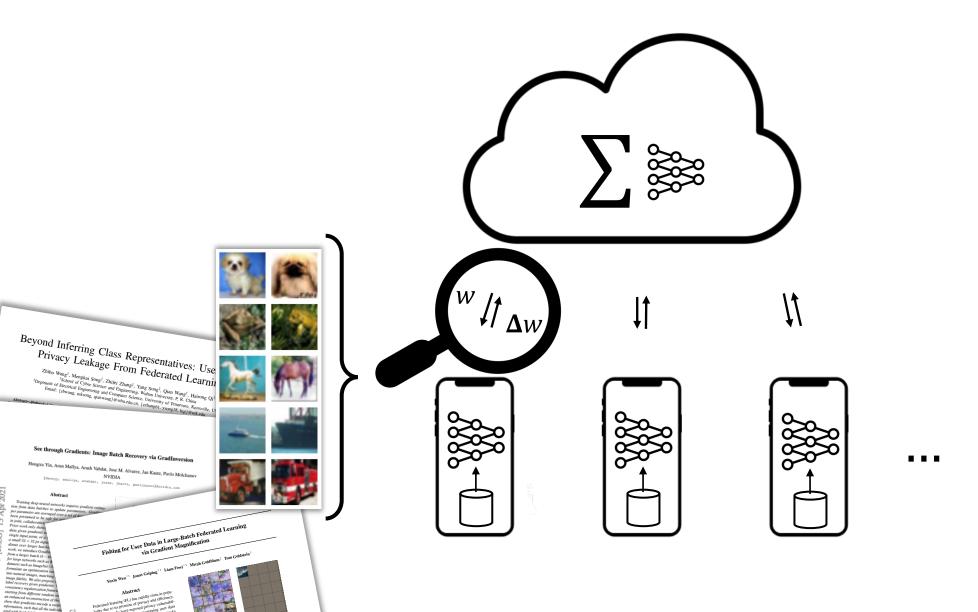




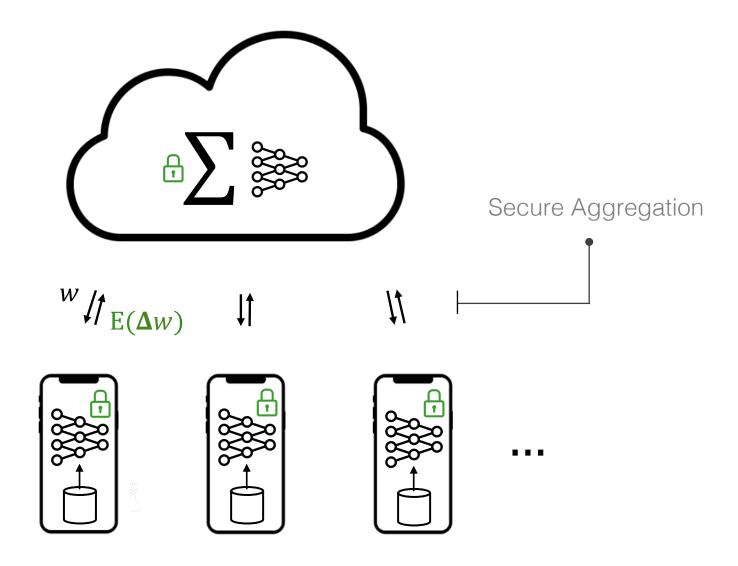




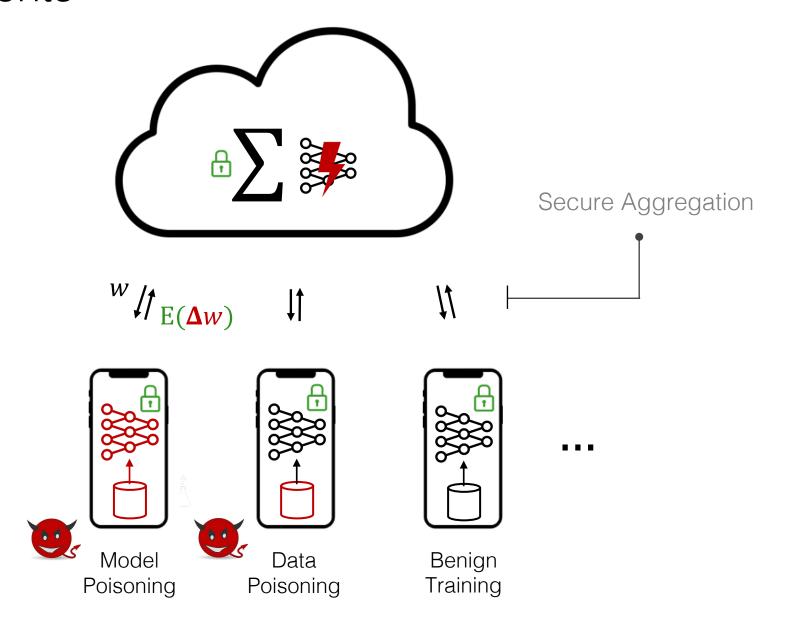
Federated Learning: Input Privacy



Secure Federated Learning



Malicious Clients

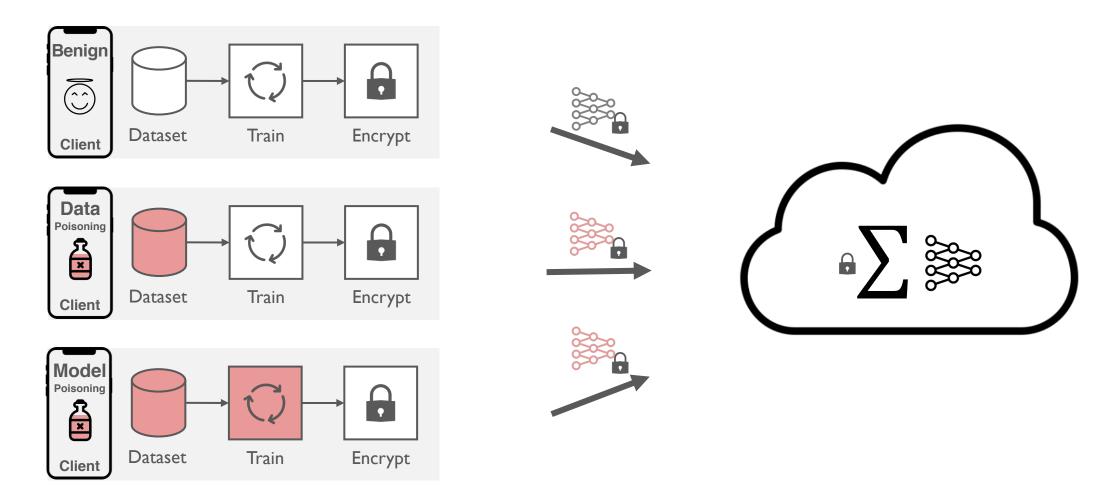


RoFL: Robustness of Secure Federated Learning

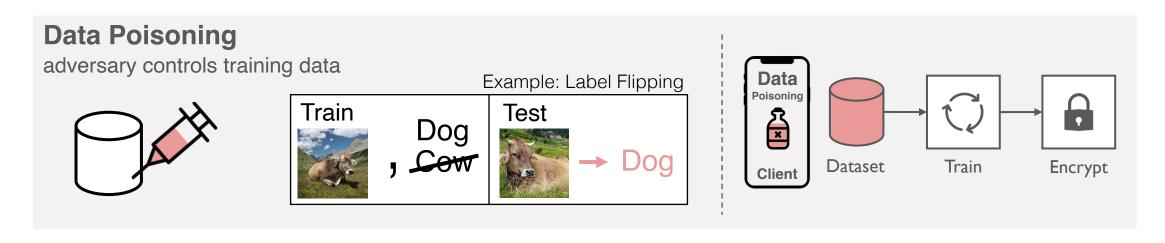
Understand Vulnerabilities in FL

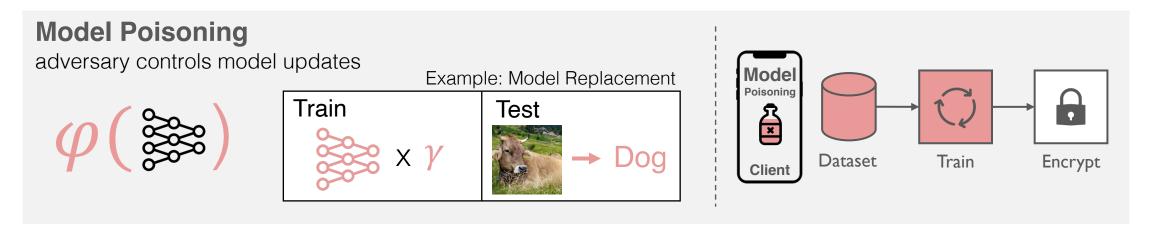
Cryptographically
Enforce Constraints

Adversarial Clients

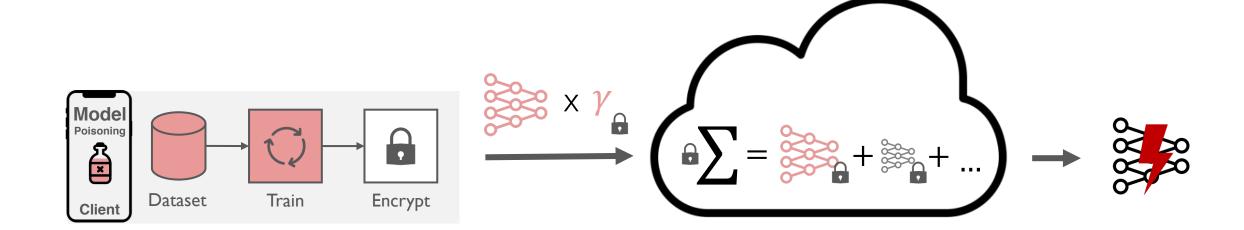


Adversarial Clients

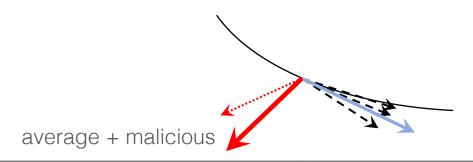




Adversarial Clients



Problem: Linear aggregation rules are vulnerable to Byzantine behavior



Machine Learning: Byzantine-Robust Distributed Learning

- Krum [Blanchard et al. NeurlPS'17]
- Trimmed Mean [Yin et al. ICML'18]
- Coordinate-wise Median [Yin et al. ICML'18]
- Bulyan [Mhamdi et al. ICML'18]
- ByzantineSGD [Alistarh et al. NeurlPS'18]
- Redundant Workers and Coding Theory [Chen et al. ICML'18, Rajput et al. NeurIPS'19]

Security:

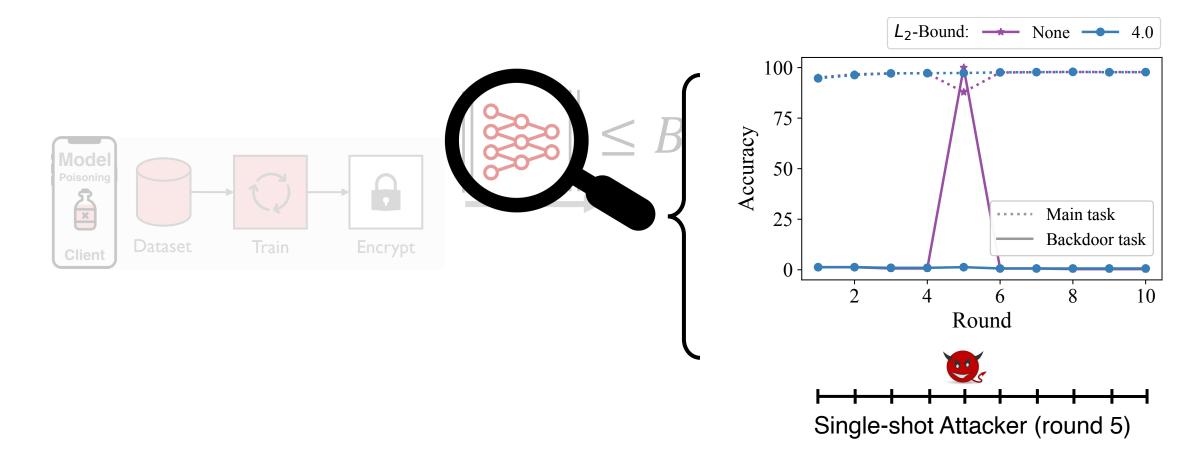
Private Data-Collection Systems

- Prio [Corrigan-Gibbs et al. NSDI'17]
- PrivStats [Popa et al. CCS'11]
- SplitX [Chen et al. SIGCOMM'13]
- P4P [Duan et al. USENIX Security'10]
- PrivEx [Elahi et al. CCS'14]

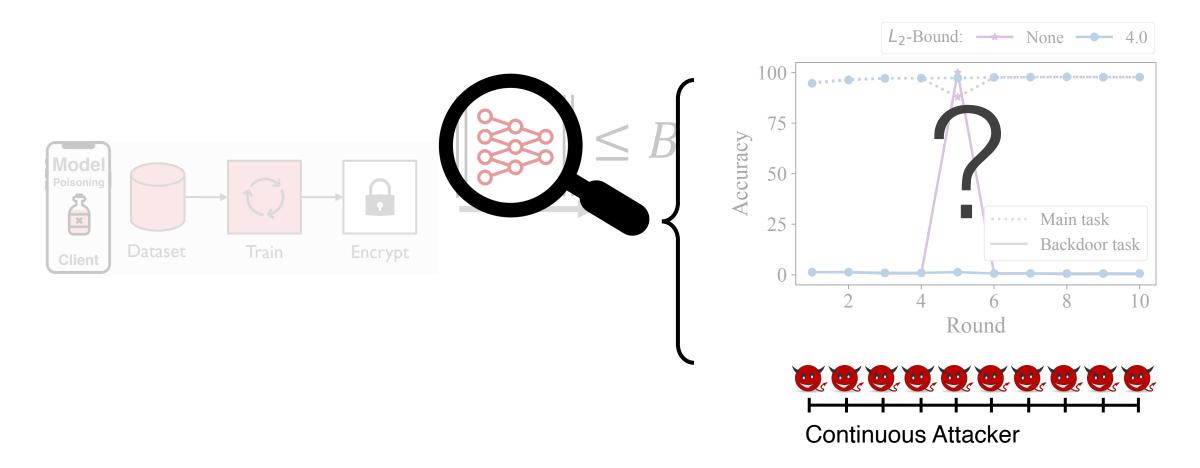
→ Zero Knowledge Proofs: client proves that its submission is well-formed

A Well-Formed Client Submission in Federated Learning

Norm bound



Norm bound



Is the norm bound actually effective?

How To Backdoor Federated Learning

Can You Really Backdoor Federated Learning?

Attack of the Tails: Yes, You Really Can Backdoor Federated Learning

Long Tail ...

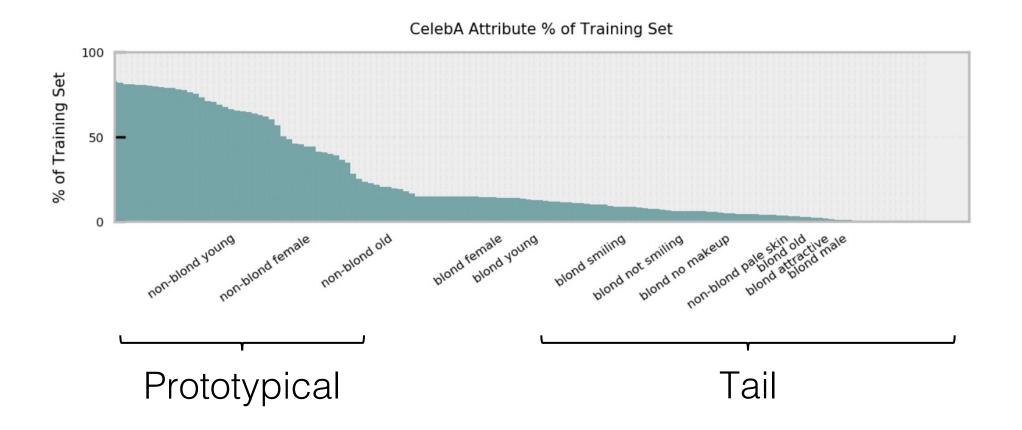
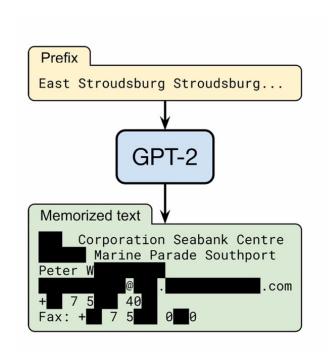
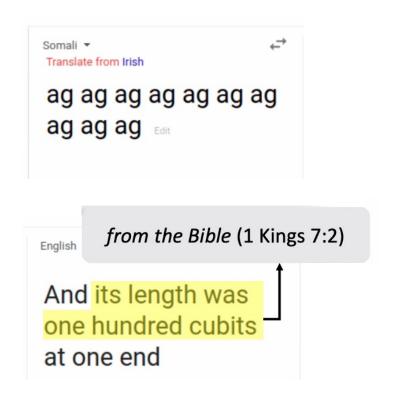


Fig: Hooker, Moorosi et al., 2020.

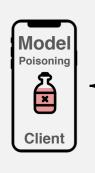
Model Capacity Implications on Privacy ...





Memorization leads to leakage of private text

Analysis: Understanding FL Robustness



Adaptive attacks

MP-PD: Projected Gradient Descent [Sun et al., FLDPC@NeurlPS'19]

MP-NT: Neurotoxin [Zhang et al., ICML'22]

MP-AT: Anticipate [Wen et al., AdvML@ICML'22]

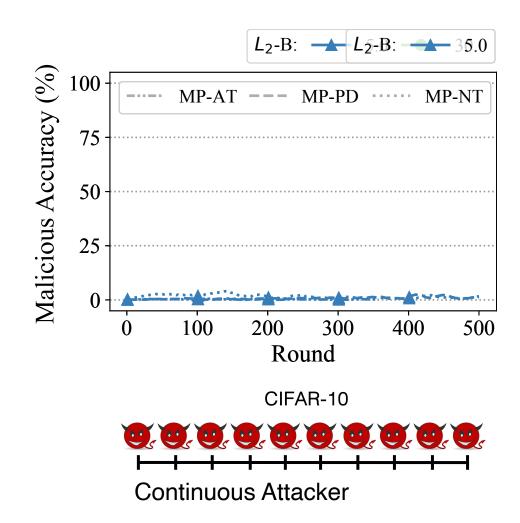
Considered:

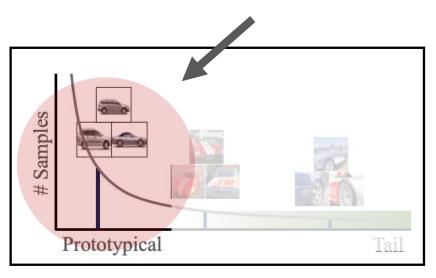
Attack Objective Number of Attackers

Bound Selection Pixel-Pattern Backdoors

Untargeted Attacks

Impact of Attack Objective on Backdoor Attacks

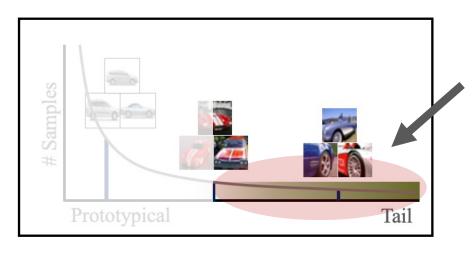




Prototypical Targets

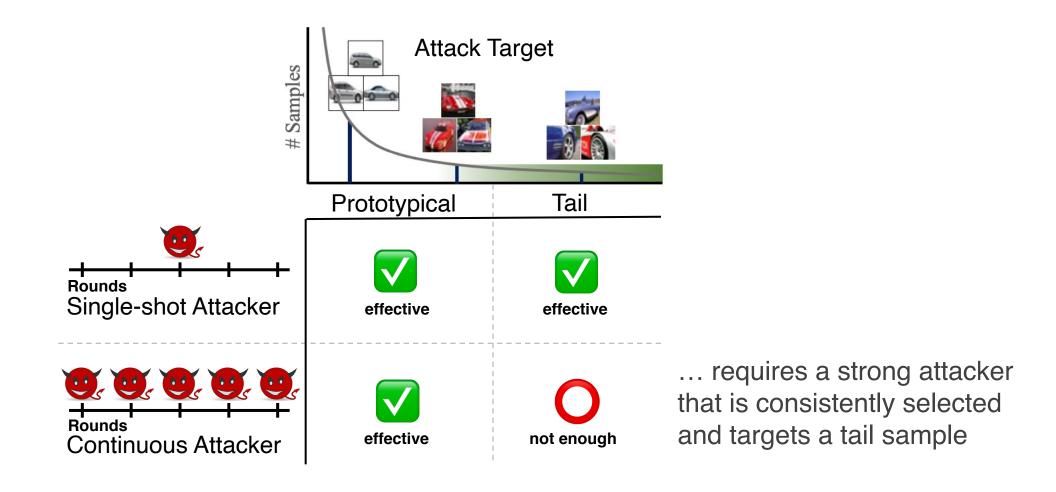
Impact of Attack Objective on Backdoor Attacks





Tail Targets

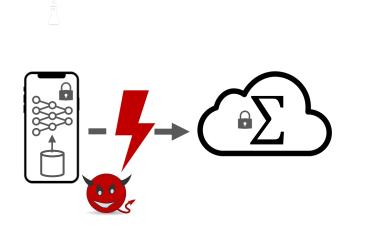
Norm Bound Provides Practical Robustness Guarantees

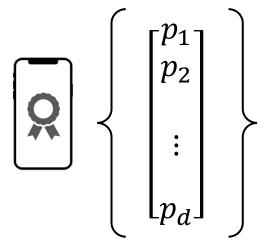


RoFL: Robustness of Secure Federated Learning

Understand Vulnerabilities in FL Cryptographically Enforce Constraints

Goal: Augment existing secure FL with Zero-Knowledge Proofs to enforce constraints on model updates





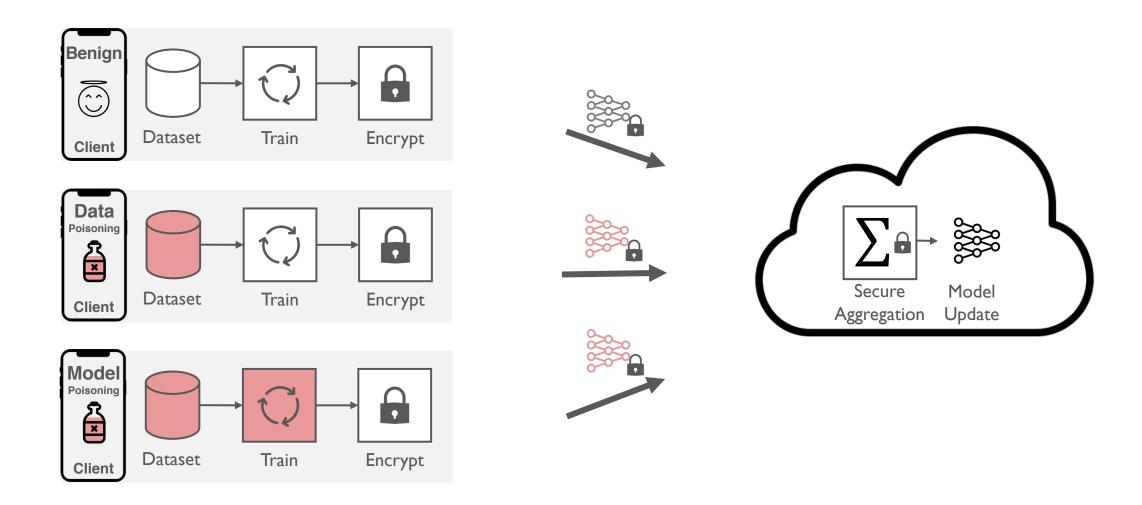
- Compressed Sigma protocols
- Optimistic continuation
- Probabilistic checking
- Subspace learning

Correctness

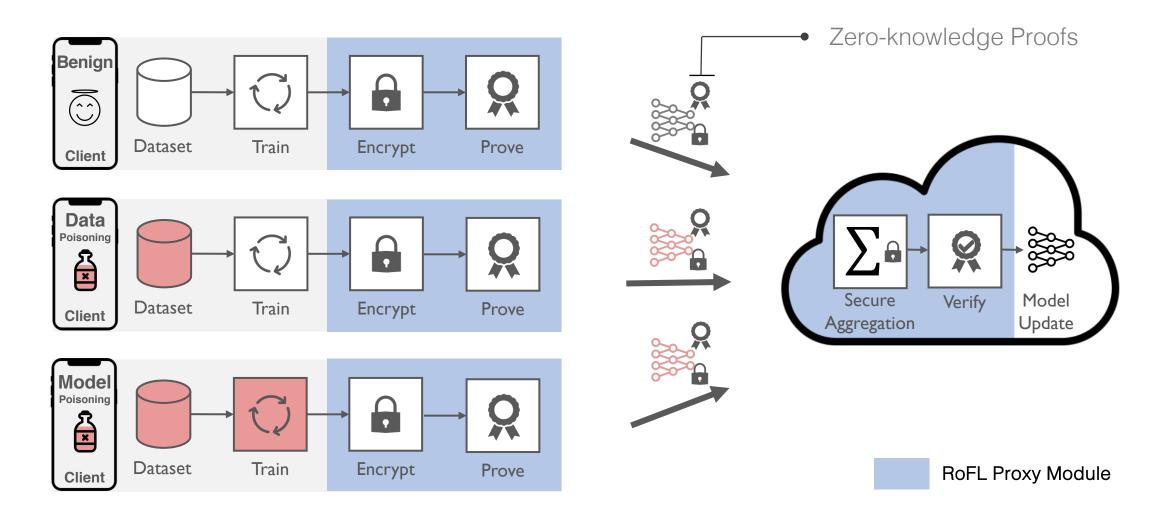
Private Input Validation

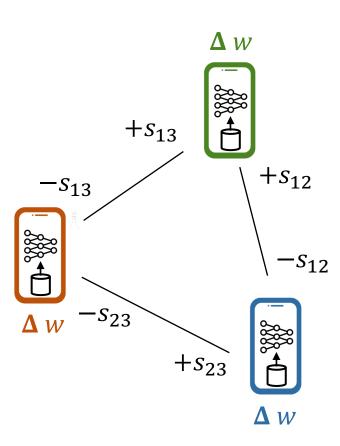
Optimizations

Secure Federated Learning



RoFL Augments Secure Federated Learning





Goal: Compute
$$\sum \Delta w_i = \Delta w + \Delta w + \Delta w$$

Idea: Additive masks based on pairwise secrets s_{ij}

$$r_1 + r_2 + r_3 = 0$$

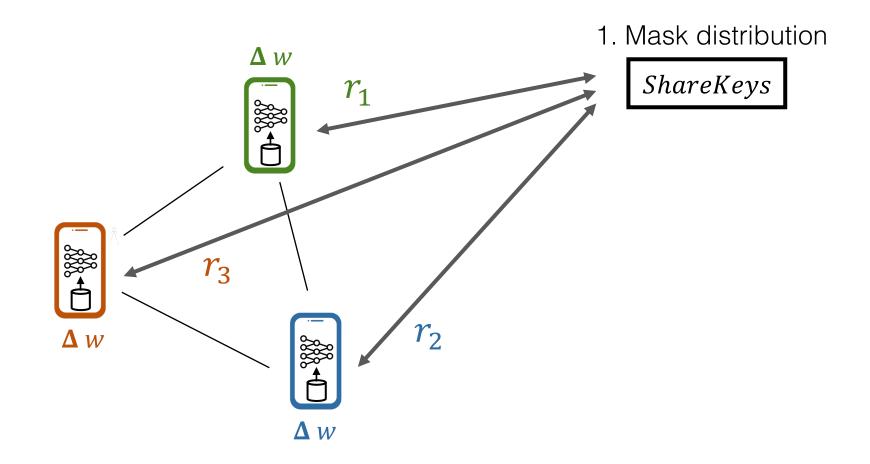
where

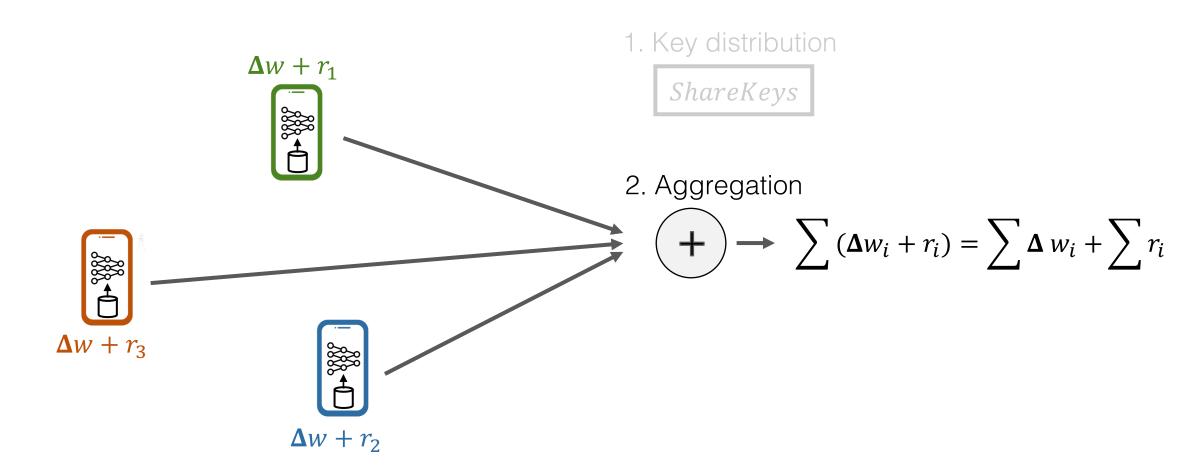
$$r_1 = s_{12} + s_{13}$$

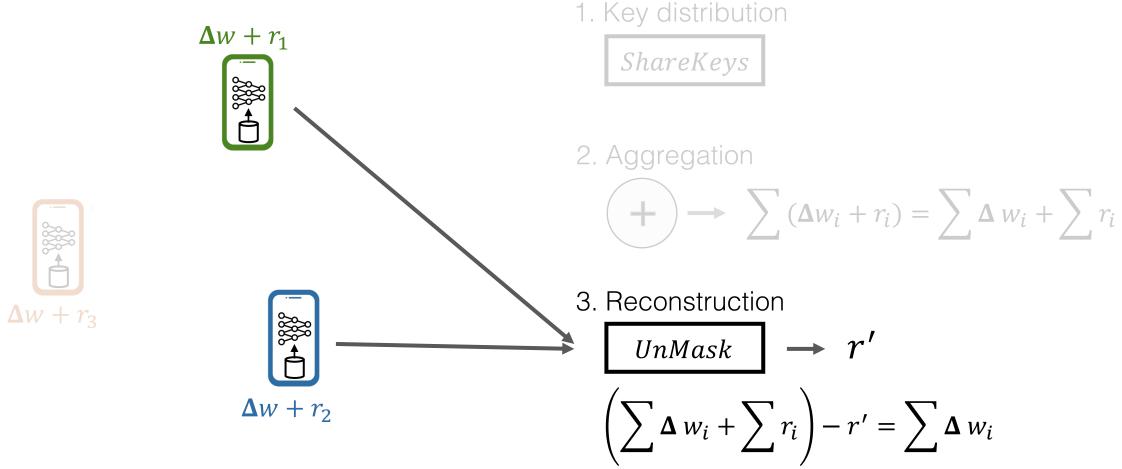
$$r_2 = -s_{12} + s_{23}$$

$$r_3 = -s_{13} - s_{23}$$

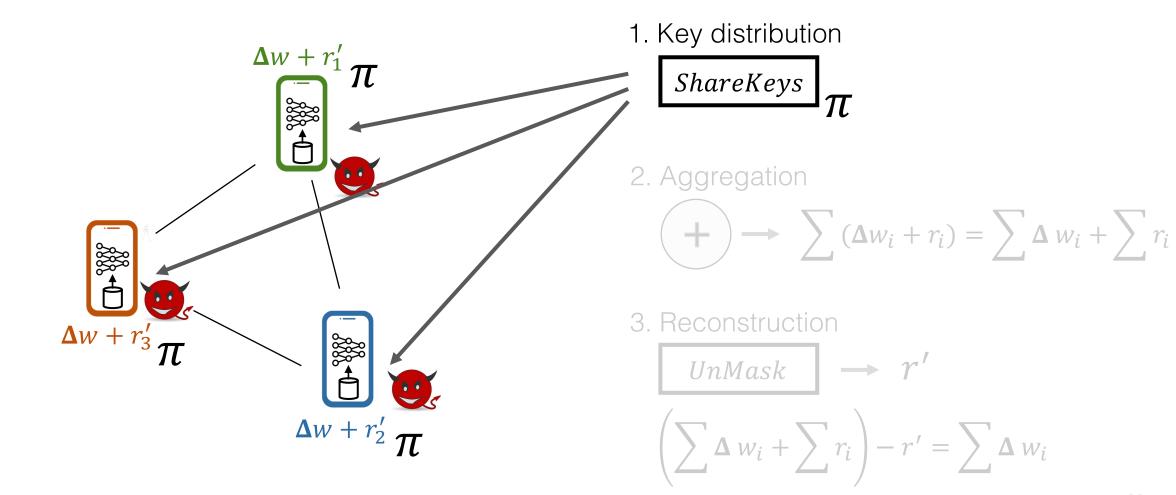
+: modular addition



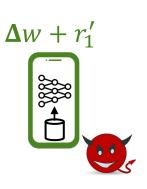


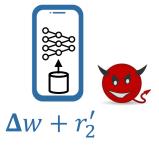


Limitation: Correctness with malicious clients



Insight: Checking $\sum r_i = r'$ sufficient for correctness





1. Key distribution

ShareKeys

2. Aggregation

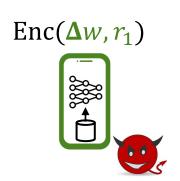
$$+ \longrightarrow \sum (\Delta w_i + r_i) = \sum \Delta w_i + \sum r_i$$

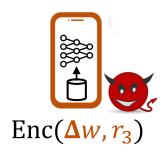
3. Reconstruction

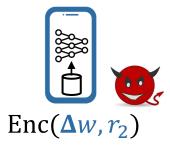
$$UnMask \rightarrow r'$$

$$\left(\sum \Delta w_i + \sum r_i\right) - r' = \sum \Delta w_i$$

Insight: Checking $\sum r_i = r'$ sufficient for correctness







1. Key distribution

ShareKeys

2. Aggregation

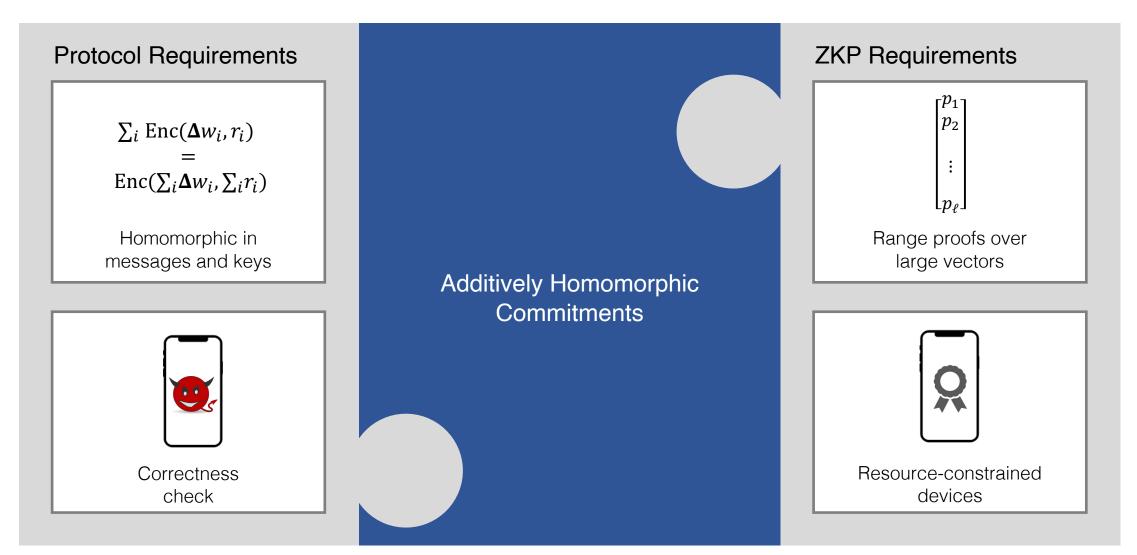
$$+ \longrightarrow \sum \operatorname{Enc}(\Delta w_i, r_i) = \operatorname{Enc}(\sum \Delta w_i, \sum r_i)$$

3. Reconstruction

$$UnMask \longrightarrow r$$

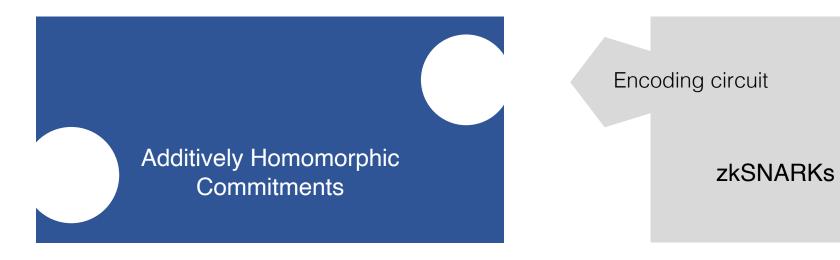
$$Dec(Enc(\sum \Delta w_i, \sum r_i), r') = \sum \Delta w_i$$

Efficiency hinges on compatibility with zero-knowledge proofs



Compatibility with Commitments

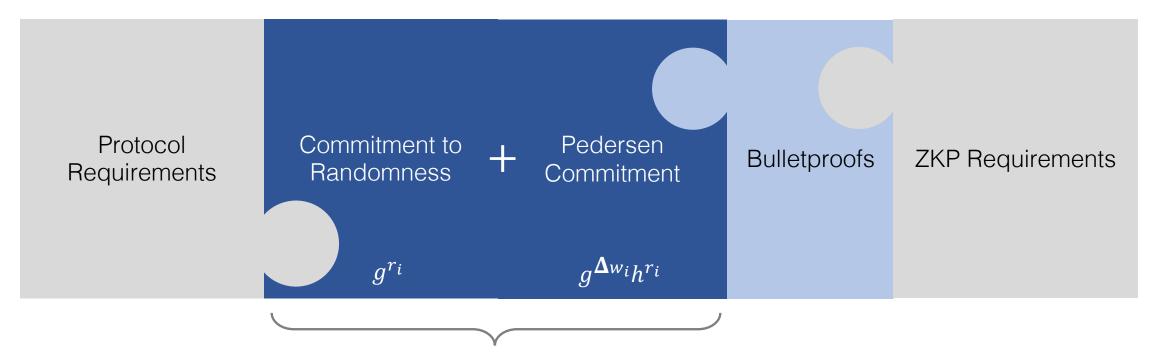
	GGPR-style zkSNARKs	
Proof size	0(1)	
Prover time	$O(\ell \log(\ell))$	
Verification time	0(1)	



Compatibility with Commitments

	GGPR-style zkSNARKs	Bulletproofs
Proof size	0(1)	$O(\log(\ell))$
Prover time	$O(\ell \log(\ell))$	$O(\ell)$
Verification time	0(1)	$O(\ell)$
Operates directly on additively homomorphic commitments	×	
Specialized range proof construction	×	
No trusted setup	×	V

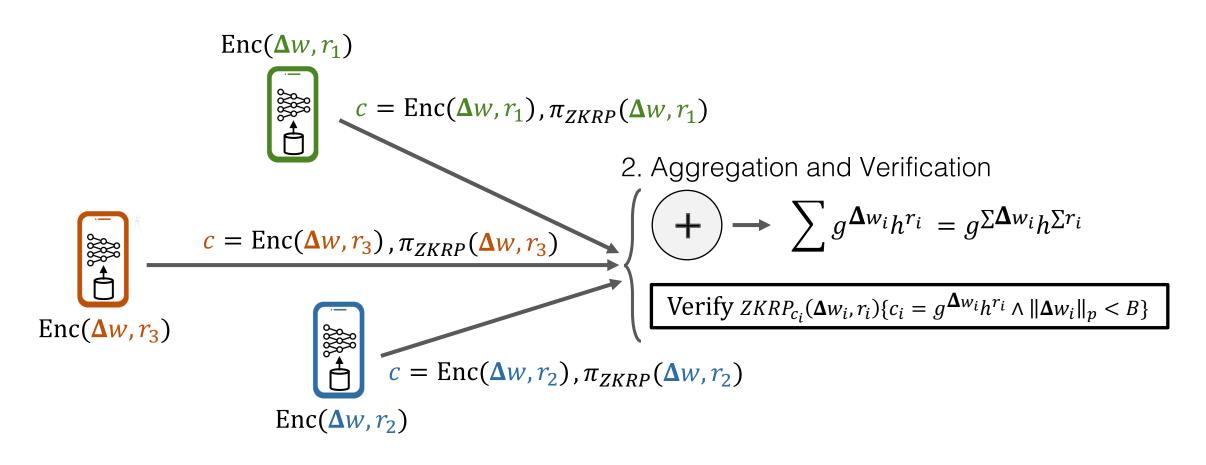
Extending Pedersen commitments for correctness



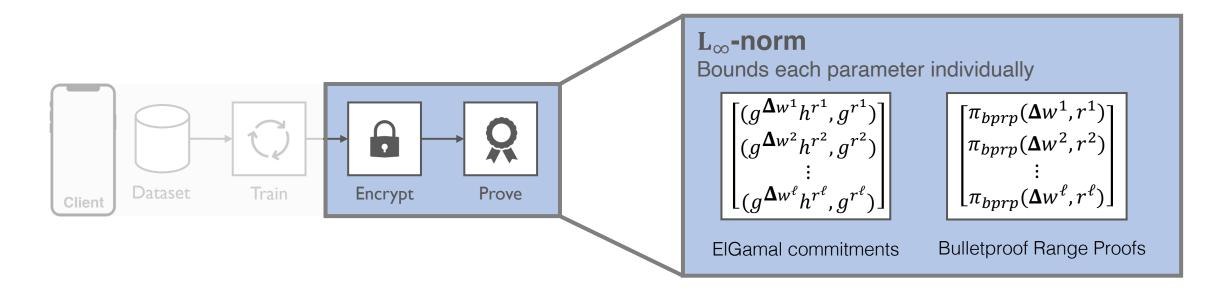
ElGamal commitment

- Server can compare $\sum g^{r_i} \leftrightarrow g^{r'}$
- Clients generate non-interactive proof-of-knowledge to proof well-formedness, i.e., r_i is the same in $(g^{\Delta w_i}h^{r_i}, g^{r_i})$

Secure Aggregation with Input Constraints

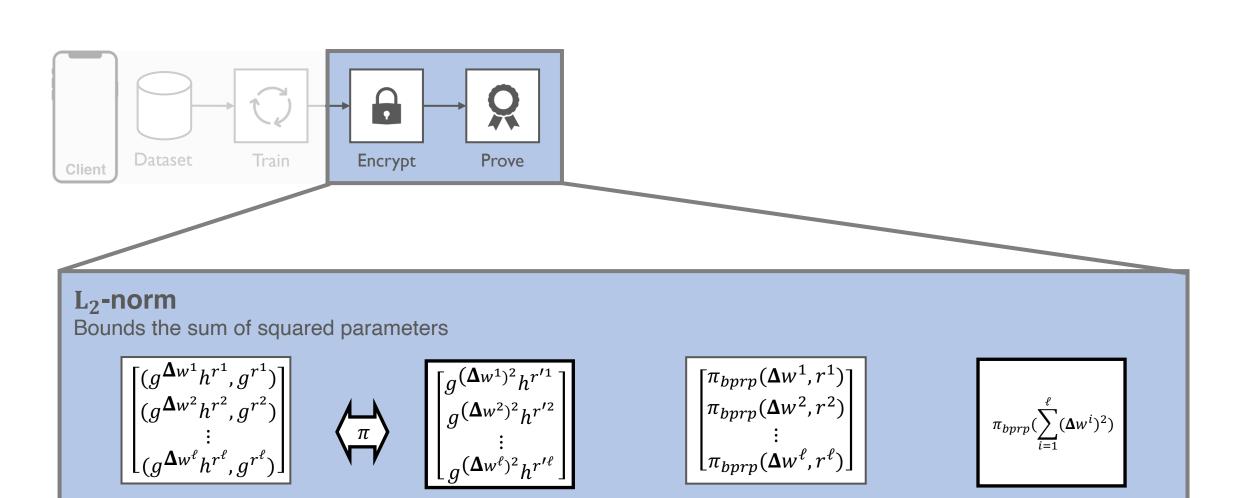


Enforcing Norm Bounds



Enforcing Norm Bounds

ElGamal commitments



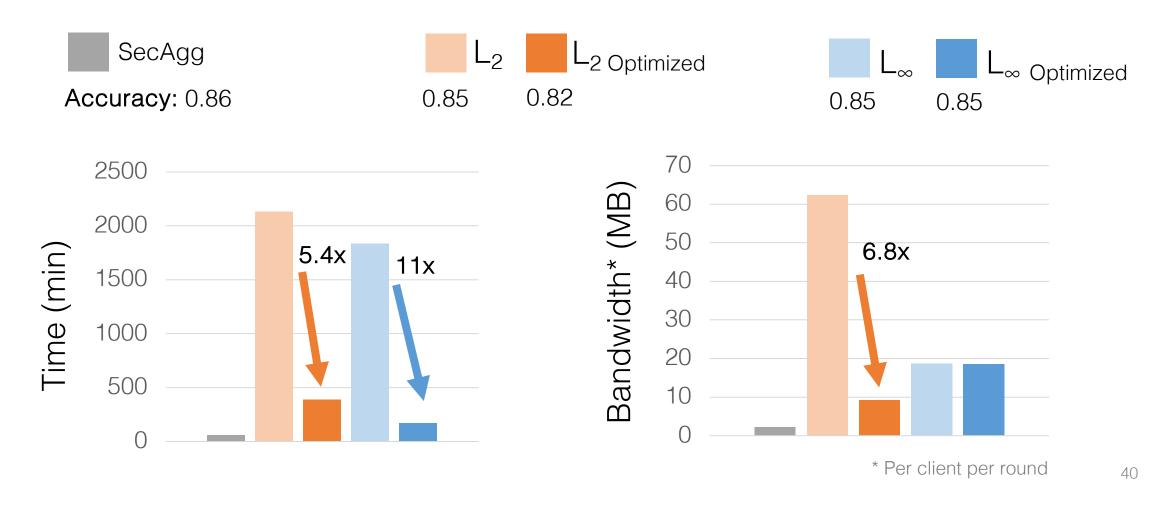
Squared commitments

Bulletproof Range Proofs

Squared Range Proof

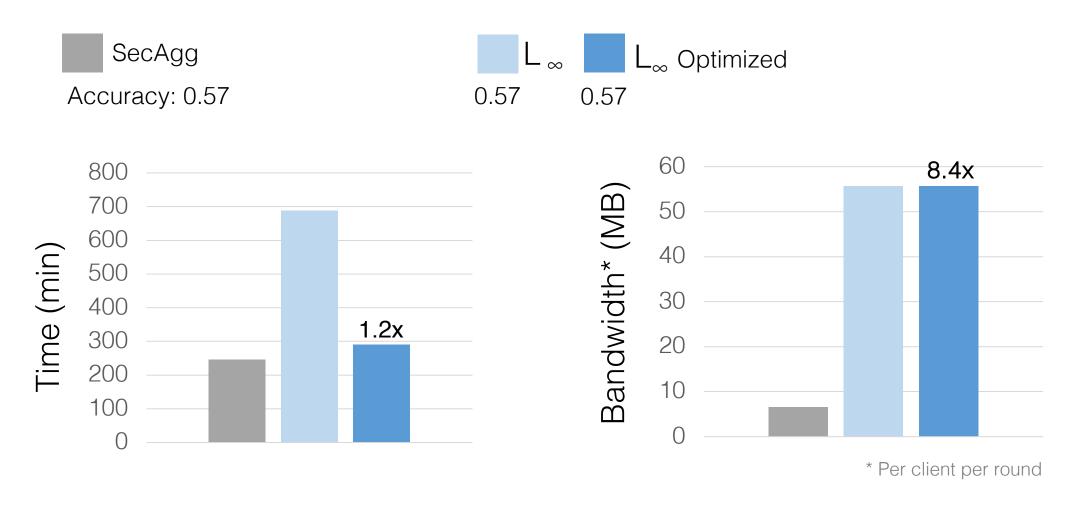
RoFL: End-To-End Performance

CIFAR-10 Model 273k Parameters Setup: 48 Clients, 160 rounds



RoFL: End-To-End Performance

Shakespeare Model 818k Parameters Setup: 48 Clients, 20 rounds



This work:

- Understanding FL Robustness
- RoFL: Secure Aggregation with Private Input Validation

Future work:

- Exploring additional client constraints for robustness
- Protocols with better bandwidth overhead
- Efficient ZKPs for resource-constrained provers

pps-lab/fl-analysis

pps-lab/rofl-project-code

pps-lab.com/research/ml-sec

