
RoFL: Robustness of Secure Federated Learning

Hidde Lycklama* Lukas Burkhalter* Alexander Viand Nicolas Küchler Anwar Hithnawi

IEEE Security & Privacy ‘23

Federated Learning

2

…

𝑤
𝚫𝑤

∑

Federated Learning

3

𝑤
𝚫𝑤

∑
Data MinimizationPurpose Limitation

𝑤
𝚫𝑤

∑

Federated Learning: Input Privacy

4

…

Beyond Inferring Class Representatives: User-Level

Privacy Leakage From Federated Learning
Zhibo Wang†, Mengkai Song†, Zhifei Zhang‡, Yang Song‡, Qian Wang†, Hairong Qi‡

†School of Cyber Science and Engineering, Wuhan University, P. R. China

‡Deptment of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, USA

Email: {zbwang, mksong, qianwang}@whu.edu.cn, {zzhang61, ysong18, hqi}@utk.edu

Abstract—Federated learning, i.e., a mobile edge computing

framework for deep learning, is a recent advance in privacy-

preserving machine learning, where the model is trained in a

decentralized manner by the clients, i.e., data curators, pre-

venting the server from directly accessing those private data

from the clients. This learning mechanism significantly chal-

lenges the attack from the server side. Although the state-of-

the-art attacking techniques that incorporated the advance of

Generative adversarial networks (GANs) could construct class

representatives of the global data distribution among all clients, it

is still challenging to distinguishably attack a specific client (i.e.,

user-level privacy leakage), which is a stronger privacy threat

to precisely recover the private data from a specific client. This

paper gives the first attempt to explore user-level privacy leakage

against the federated learning by the attack from a malicious

server. We propose a framework incorporating GAN with a multi-

task discriminator, which simultaneously discriminates category,

reality, and client identity of input samples. The novel discrim-

ination on client identity enables the generator to recover user

specified private data. Unlike existing works that tend to interfere

the training process of the federated learning, the proposed

method works “invisibly” on the server side. The experimental

results demonstrate the effectiveness of the proposed attacking

approach and the superior to the state-of-the-art.
1I. INTRODUCTION

Increasingly, modern deep learning technique is beginning

to emerge in the networking domain, such as a crowdsourced

system for learning tasks. But utilizing conventional cen-

tralized training methodology requires local storage of the

crowdsourced data, which suffers from the high volume of

traffic, highly computational demands and privacy concerns.

For collectively reaping the benefits of the shared model

trained from this rich data without the need to store it centrally,

distributed learning framework was proposed, serving as a

mobile edge computing framework for deep learning. Shokri

et al. [1] proposed the collaborative learning DSSGD, where

the data providers, i.e., clients, train locally on a shared model,

and then the server will collect those local models/updates to

estimate/update a global model instead of directly assessing

the private data from clients. Then, the global model is sent

back to clients, iterating the aforementioned local training

process. In the same token, federated learning [2] proposed

a variant of decentralized learning with higher efficiency.

The key improvement lies in the way of updating the global

model, i.e., DSSGD performs the aggregated update while

1This manuscript has been accepted by IEEE INFOCOM 2019.

Server

Client 1

Client 2

Client 3

Client N

Fig. 1: The framework of federated learning. The server sends

the shared model to each client, which trains the shared

model locally by its private data. Then, the update from

each client is uploaded to the server, where those updates

are aggregated/averaged to improve the shared model in a

collaborative manor.
the federated learning conducts the averaged update, which is

more suitable for the commonly non-IID and unbalanced data

distribution among clients in the real world. Fig. 1 illustrates

the framework of federated learning.
However, recent works demonstrated that the collaborative

learning is vulnerable to the inference attack, e.g., reconstruc-

tion attack and membership attack, by malicious servers/clients

because the shared model is updated according to those private

data, whose pattern is encoded into the model parameters.

Therefore, if a corresponding decoder could be constructed,

the private data or statistics will be recovered inversely. Under

the assumption of a malicious server, Aono et al. [3] partially

recovered the private data based on the observation that the

gradient of weights is proportional to that of the bias at the first

layer of the model, and their radio approximates to the training

input. But it could only apply to a simplified setting where the

training batch has only one sample. Hitaj et al. [4] proposed

a GAN-based reconstruction attack against the collaborative

learning by assuming a malicious client, which utilized the

shared model as the discriminator to train a GAN [5]. Even-

tually, the learned generator (equivalent to the decoder) will

successfully mimic the training samples. Although [4] had

demonstrated the effectiveness of GAN-based attack against

DSSGD, it presents mainly three limitations: 1) It would

ar
X

iv
:1

81
2.

00
53

5v
3

 [c
s.L

G
]

5
D

ec
 2

01
8

Fishing for User Data in Large-Batch Federated Learning

via Gradient Magnification

Yuxin Wen
* 1 Jonas Geiping

* 1 Liam Fowl
* 1 Micah Goldblum

2 Tom Goldstein
1

Abstract

Federated learning (FL) has rapidly risen in popu-

larity due to its promise of privacy and efficiency.

Previous works have exposed privacy vulnerabil-

ities in the FL pipeline by recovering user data

from gradient updates. However, existing attacks

fail to address realistic settings because they either

1) require toy settings with very small batch sizes,

or 2) require unrealistic and conspicuous architec-

ture modifications. We introduce a new strategy

that dramatically elevates existing attacks to oper-

ate on batches of arbitrarily large size, and without

architectural modifications. Our model-agnostic

strategy only requires modifications to the model

parameters sent to the user, which is a realis-

tic threat model in many scenarios. We demon-

strate the strategy in challenging large-scale set-

tings, obtaining high-fidelity data extraction in

both cross-device and cross-silo federated learn-

ing. Code is available at https
://gi

thub.

com/J
onasG

eipin
g/bre

achin
g.

1. Introduction

Is it possible to train machine learning models on massive

amounts of private data without compromising the data and

feeding it to a central server? Federated learning is poised

to be one step towards a solution to this question.

In federated learning (FL) and other collaborative learning

frameworks, machine learning models are trained in a decen-

tralized manner. A central server sends only the current state

of the model to all participating users, the users compute

model updates based on their own private data, and only

their update is returned to the server, optionally after being

securely aggregated across multiple users (Kairouz et al.,

2021; Bonawitz et al., 2017). This is often referred to as the

principle of data minimization - the server never sees user

* Equal contribution 1 University of Maryland 2 New York Univer-

sity. Correspondence to: Yuxin Wen <ywen@umd.edu>, Jonas

Geiping <jgeiping@umd.edu>, Liam Fowl <lfowl@umd.edu>.

Figure 1. Previous attacks (left) for a batch size of 32 in the

“honest-but-curious” threat model, vs. a fishing attack (right) under

the “malicious-parameters” threat model. Malicious modifications

of the server update lead to the complete compromise of a sin-

gle example which is fished out of an arbitrarily large batch of

aggregated data.

data directly, and model updates sent by the user are consid-

ered to only contain the minimal information necessary to

improve the model (Bonawitz et al., 2021). However, fed-

erated learning is only secure as long as the model updates

sent by users cannot be inverted to retrieve their original

contents. Such attacks breach privacy in federated learning

and directly reveal user data. Previously, such attacks have

been demonstrated mostly on either small batches of data,

e.g. in Wang et al. (2018); Zhu et al. (2019) under the threat

model of an “honest-but-curious” server or in settings with

ar
X

iv
:2

20
2.

00
58

0v
2

 [c
s.L

G
]

19
 Ju

n
20

22

When the Curious Abandon Honesty:
Federated Learning Is Not Private⇧Franziska Boenisch⇤, Adam Dziedzic⇤†§, Roei Schuster⇤§,

Ali Shahin Shamsabadi⇤‡§, Ilia Shumailov⇤§, and Nicolas Papernot⇤†

⇤Vector Institute †University of Toronto ‡The Alan Turing Institute

Abstract—In federated learning (FL), data does not leave

personal devices when they are jointly training a machine

learning model. Instead, these devices share gradients, pa-

rameters, or other model updates, with a central party

(e.g., a company) coordinating the training. Because data

never “leaves” personal devices, FL is often presented as

privacy-preserving. Yet, recently it was shown that this

protection is but a thin facade, as even a passive, honest-but-

curious attacker observing gradients can reconstruct data of

individual users contributing to the protocol.

In this work, we show a novel data reconstruction

attack which allows an active and dishonest central party

to efficiently extract user data from the received gradients.

While prior work on data reconstruction in FL relies on

solving computationally expensive optimization problems or

on making easily detectable modifications to the shared

model’s architecture or parameters, in our attack the central

party makes inconspicuous changes to the shared model’s

weights before sending them out to the users. We call the

modified weights of our attack trap weights.
Our active attacker is able to recover user data perfectly,

i.e., with zero error, even when this data stems from the

same class. Recovery comes with near-zero costs: the attack

requires no complex optimization objectives. Instead, our

attacker exploits inherent data leakage from model gradients

and simply amplifies this effect by maliciously altering the

weights of the shared model through the trap weights. These

specificities enable our attack to scale to fully-connected and

convolutional deep neural networks trained with large mini-

batches of data. For example, for the high-dimensional vision

dataset ImageNet, we perfectly reconstruct more than 50%

of the training data points from mini-batches as large as

100 data points. In textual tasks, such as IMDB sentiment

analysis, more than 65% of data points from mini-batches

containing 100 data points can be perfectly reconstructed.
1. Introduction

With machine learning (ML) being increasingly ap-

plied to sensitive data in critical use-cases such as health

care [21], [39], smart metering [16], [49], or the internet

of things [27], [36], there is a growing need for privacy-

preserving training schemes that do not leak sensitive

information. Federated learning (FL) is a widely popular

distributed learning protocol [33] where user data can be

§. Equal contribution.
⇧. Accepted at the 8th IEEE European Symposium on Security and

Privacy (IEEE Euro S&P).

Original

Extracted

Original

Extracted

ive read a few of the reviews and im kinda

sad that a lot of the story seems [UNK] ...
ive read a few of the reviews and im kinda

sad that a lot of the story seems [UNK] ...
Figure 1: Original and Reconstructed Data. Original

data and data points extracted from model gradients with

our trap weights attack. Extraction is perfect i.e. recon-

struction error is zero.

utilized for jointly training an ML model without the data

ever leaving the users’ device. Instead, the device com-

putes and sends model updates to a central party which

aggregates them to produce a shared model. Assuming

the model updates do not reveal the user data, FL would,

thereby, preserve a notion of privacy.
This assumption has been repeatedly contested by

prior work. It has been shown how the model updates sent

to the central party not only leak training data member-

ship [34] (i.e. allow the attacker to tell if a given data

point was used in training) but also properties of the

training data [14], [34]. Inspecting model updates allows

attackers to even (partially) reconstruct [12], [15], [50],

[53], [55], [56] users’ training data. Ultimately, FL in

its naive implementation offers little to no guarantees

regarding potential leakage of user data to other users or

to the central party.Yet, existing data reconstruction attacks either are

computationally expensive and yield low-fidelity extrac-

tion [55], [56], are limited to small mini-batch sizes [15],

or require modifications of the model architecture that are

trivially detected [12]. Another other line of concurrent

work proposes modifications to the model parameters

that are still easily noticeable: The attack introduced by

Pasquini et al. [37] sets a noticeable portion of parameters

to zero or negative values. Similarly, the attacks by Wen et

al. [52] zero out many parameters of the last fully con-

nected classification layer. In this work, we perform data

extraction from large mini-batches of local data based on

inconspicuous manipulations of the shared model weights.

We start by showing scenarios where the gradients sent

to the central party include full, memorized training data

points. We then proceed to show that a malicious central

ar
X

iv
:2

11
2.

02
91

8v
2

 [c
s.L

G
]

12
 A

pr
 2

02
3

Inverting Gradients - How easy is it to break privacy

in federated learning?

Jonas Geiping⇤
Hartmut Bauermeister ⇤ Hannah Dröge ⇤

Michael Moeller

Dep. of Electrical Engineering and Computer Science

University of Siegen

{jonas.
geiping

, hartmut
.bauerm

eister,
hannah.

droege,

michael
.moelle

r }@uni-s
iegen.d

e

Abstract

The idea of federated learning is to collaboratively train a neural network on a

server. Each user receives the current weights of the network and in turns sends

parameter updates (gradients) based on local data. This protocol has been designed

not only to train neural networks data-efficiently, but also to provide privacy benefits

for users, as their input data remains on device and only parameter gradients are

shared. But how secure is sharing parameter gradients? Previous attacks have

provided a false sense of security, by succeeding only in contrived settings - even

for a single image. However, by exploiting a magnitude-invariant loss along with

optimization strategies based on adversarial attacks, we show that is is actually

possible to faithfully reconstruct images at high resolution from the knowledge of

their parameter gradients, and demonstrate that such a break of privacy is possible

even for trained deep networks. We analyze the effects of architecture as well as

parameters on the difficulty of reconstructing an input image and prove that any

input to a fully connected layer can be reconstructed analytically independent of

the remaining architecture. Finally we discuss settings encountered in practice and

show that even averaging gradients over several iterations or several images does

not protect the user’s privacy in federated learning applications.

1 Introduction

Federated or collaborative learning [7, 31] is a distributed learning paradigm that has recently gained

significant attention as both data requirements and privacy concerns in machine learning continue to

rise [24, 16, 35]. The basic idea is to train a machine learning model, for example a neural network,

by optimizing the parameters ✓ of the network using a loss function L and exemplary training data

consisting of input images xi and corresponding labels yi in order to solve

min
✓

NX

i=1

L✓(xi, yi).

(1)

We consider a distributed setting in which a server wants to solve (1) with the help of multiple

users that own training data (xi, yi). The idea of federated learning is to only share the gradients

r✓L✓(xi, yi)
instead of the original data (xi, yi)

with the server which it subsequently accumulates to

⇤Authors contributed equally.

Preprint. Under review.

ar
X

iv
:2

00
3.

14
05

3v
2

 [c
s.C

V
]

11
 S

ep
 2

02
0

Secure Federated Learning

5

𝑤
E(𝚫𝑤)

…

Secure Aggregation
∑

Malicious Clients

6

𝑤
E(𝚫𝑤)

…

Secure Aggregation

Model
Poisoning

Data
Poisoning

Benign
Training

∑

Understand
Vulnerabilities in FL

Cryptographically
Enforce Constraints

7

RoFL: Robustness of Secure Federated Learning

Adversarial Clients

8

∑
Dataset Train EncryptClient

Data
Poisoning

Dataset Train EncryptClient

Model
Poisoning

Dataset Train EncryptClient

Benign

9

Adversarial Clients

Dataset Train EncryptClient

Data
Poisoning

Dataset Train EncryptClient

Model
Poisoning

Data Poisoning
adversary controls training data

Model Poisoning
adversary controls model updates

Train

Cow, Test

Dog

Example: Label Flipping

Dog

𝜑() Train Test

Dog

Example: Model Replacement

x 𝛾

∑ +

10

Adversarial Clients

Dataset Train EncryptClient

Model
Poisoning

x 𝛾
= + …

Problem: Linear aggregation rules are vulnerable
to Byzantine behavior

Machine Learning:
Byzantine-Robust Distributed Learning
- Krum [Blanchard et al. NeurIPS’17]
- Trimmed Mean [Yin et al. ICML’18]
- Coordinate-wise Median [Yin et al. ICML’18]
- Bulyan [Mhamdi et al. ICML’18]
- ByzantineSGD [Alistarh et al. NeurIPS’18]
- Redundant Workers and Coding Theory [Chen et al. ICML’18,

Rajput et al. NeurIPS’19]

Security:
Private Data-Collection Systems
- Prio [Corrigan-Gibbs et al. NSDI’17]
- PrivStats [Popa et al. CCS’11]
- SplitX [Chen et al. SIGCOMM’13]
- P4P [Duan et al. USENIX Security’10]
- PrivEx [Elahi et al. CCS’14]

à Zero Knowledge Proofs: client proves that its submission is well-formed

average + malicious

11

A Well-Formed Client Submission in Federated Learning

12

Dataset Train EncryptClient

Model
Poisoning

Norm bound

≤ 𝐵

13

2 4 6 8 10
5Rund

0

25

50

75

100

A
cc

ur
ac

y

L2-BRund: 1Rne

0ain tasN
BacNdRRr tasN
0ain tasN
BacNdRRr tasN

2 4 6 8 10
5Rund

0

25

50

75

100

A
cc

ur
ac

y

L2-BRund: 1Rne 4.0

0ain tasN
BacNdRRr tasN
0ain tasN
BacNdRRr tasN

Single-shot Attacker (round 5)

Dataset Train EncryptClient

Model
Poisoning

Norm bound

≤ 𝐵

14

2 4 6 8 10
5Rund

0

25

50

75

100

A
cc

ur
ac

y

L2-BRund: 1Rne

0ain tasN
BacNdRRr tasN
0ain tasN
BacNdRRr tasN

2 4 6 8 10
5Rund

0

25

50

75

100

A
cc

ur
ac

y

L2-BRund: 1Rne 4.0

0ain tasN
BacNdRRr tasN
0ain tasN
BacNdRRr tasN

Continuous Attacker

?

Bagdasaryan et al., How to backdoor Federated Learning, AISTATS 2020
Sun et al., Can you really backdoor federated learning?, Federated learning workshop at NeurIPS 2019
Wang et al., Attack of the Tails: Yes, You Really Can Backdoor Federated Learning, NeurIPS 2020

Is the norm bound actually effective?

15

Long Tail …

16

Fig: Hooker, Moorosi et al., 2020.

Prototypical Tail

Model Capacity Implications on Privacy …

Fig Left – Carlini et al., Extracting Training Data from Large Language Models, USENIX Security 2021.
Fig Right – Tramer, From average-case to worst-case privacy leakage in neural networks”, talk at Privacy and Security in ML Interest Group, 2022.

Memorization leads to leakage of private text

17

Analysis: Understanding FL Robustness

Adaptive attacks

18

Attack
Objective

Number of
Attackers

Bound
Selection

Pixel-Pattern
Backdoors

Untargeted
Attacks

Client

Model
Poisoning MP-PD: Projected Gradient Descent [Sun et al., FLDPC@NeurIPS’19]

MP-NT: Neurotoxin [Zhang et al., ICML’22]

MP-AT: Anticipate [Wen et al., AdvML@ICML’22]

Considered:

Prototypical Targets

19

Impact of Attack Objective on Backdoor Attacks

CIFAR-10

M
al

ic
io

us
 A

cc
ur

ac
y

(%
)

0 100 200 300 400 500
5Rund

0

25

50

75

100

L2-B: 5.0 30.0

03-A7 03-3D 03-1703-A7 03-3D 03-17

0 100 200 300 400 500
5Rund

0

25

50

75

100

L2-B: 5.0

03-A7 03-3D 03-1703-A7 03-3D 03-17

Continuous Attacker

Tail Targets

20

Impact of Attack Objective on Backdoor Attacks

0 100 200 300 400 500
5Rund

0

25

50

75

100

A
cc

ur
Dc

y
(%

)

Att. 2bM: 7DiO 3rRtRtype

 AttDcN: 03-A7 03-3D 03-17 D3 AttDcN: 03-A7 03-3D 03-17 D3

0 100 200 300 400 500
5Rund

0

25

50

75

100

A
cc

ur
Dc

y
(%

)

Att. 2bM: 3rRtRtype

 AttDcN: 03-A7 03-3D 03-17 D3 AttDcN: 03-A7 03-3D 03-17 D3

CIFAR-10

M
al

ic
io

us
 A

cc
ur

ac
y

(%
)

0 100 200 300 400 500
5Rund

0

25

50

75

100

0 100 200 300 400 500
5Rund

0

25

50

75

100

Continuous Attacker

Norm Bound Provides Practical Robustness Guarantees

21

Prototypical Tail

Single-shot Attacker
Rounds

Continuous Attacker
Rounds

effective effective

effective not enough

✅

⭕

Attack Target

… requires a strong attacker
that is consistently selected
and targets a tail sample

✅

✅

Understand
Vulnerabilities in FL

Cryptographically
Enforce Constraints

22

RoFL: Robustness of Secure Federated Learning

Goal: Augment existing secure FL with Zero-Knowledge
Proofs to enforce constraints on model updates

Private Input Validation

𝑝!
𝑝"

⋮

𝑝#

Correctness

23

∑

Optimizations

• Compressed Sigma protocols
• Optimistic continuation
• Probabilistic checking
• Subspace learning

Dataset Train EncryptClient

Model
Poisoning

Secure Federated Learning

24

Dataset Train EncryptClient

Data
Poisoning

Dataset Train EncryptClient

Benign

Secure
Aggregation

∑
Model
Update

RoFL Augments Secure Federated Learning

25

Dataset Train EncryptClient

Model
Poisoning

Dataset Train EncryptClient

Data
Poisoning

Dataset Train EncryptClient

Benign

Secure
Aggregation

∑
Model
Update

Verify

Prove

Prove

Prove RoFL Proxy Module

Zero-knowledge Proofs

Secure Aggregation

𝚫 𝑤

𝚫 𝑤

𝚫 𝑤
Goal: Compute

&𝚫𝑤! = 𝚫 𝑤 + 𝚫 𝑤 + 𝚫 𝑤

𝑟) + 𝑟* + 𝑟+ = 0

Idea: Additive masks based on
pairwise secrets 𝑠$%

+: modular addition

Bonawitz et al., Practical Secure Aggregation for Privacy-Preserving Machine Learning, CCS 2017.
26

+𝑠"#

−𝑠"#

−𝑠$"

+𝑠$"−𝑠$#

+𝑠$#

where
𝑟! = 𝑠!" + 𝑠!#
𝑟" = −𝑠!" + 𝑠"#
𝑟# = −𝑠!# − 𝑠"#

Secure Aggregation

+: modular addition

𝑆ℎ𝑎𝑟𝑒𝐾𝑒𝑦𝑠

Bonawitz et al., Practical Secure Aggregation for Privacy-Preserving Machine Learning, CCS 2017.
27

𝚫 𝑤

𝚫 𝑤

𝚫 𝑤
𝑟)

𝑟*

𝑟+

1. Mask distribution

Secure Aggregation

+: modular addition

𝑆ℎ𝑎𝑟𝑒𝐾𝑒𝑦𝑠

Bonawitz et al., Practical Secure Aggregation for Privacy-Preserving Machine Learning, CCS 2017.
28

1. Key distribution

2. Aggregation

&(𝚫𝑤! + 𝑟!) =&𝚫𝑤! +&𝑟!

𝚫𝑤 + 𝑟"

𝚫𝑤 + 𝑟$

𝚫𝑤 + 𝑟#

Secure Aggregation

+: modular addition

𝑆ℎ𝑎𝑟𝑒𝐾𝑒𝑦𝑠

Bonawitz et al., Practical Secure Aggregation for Privacy-Preserving Machine Learning, CCS 2017.
29

𝑈𝑛𝑀𝑎𝑠𝑘

1. Key distribution

3. Reconstruction

2. Aggregation

&(𝚫𝑤! + 𝑟!) =&𝚫𝑤! +&𝑟!

𝚫𝑤 + 𝑟"

𝚫𝑤 + 𝑟$

𝚫𝑤 + 𝑟#
𝑟9

&𝚫 𝑤! +&𝑟! − 𝑟% =&𝚫𝑤!

Limitation: Correctness with malicious clients

𝑆ℎ𝑎𝑟𝑒𝐾𝑒𝑦𝑠

30

𝑈𝑛𝑀𝑎𝑠𝑘

1. Key distribution

3. Reconstruction

2. Aggregation

𝑟9

𝚫𝑤 + 𝑟"%

𝚫𝑤 + 𝑟$%

𝚫𝑤 + 𝑟#%

&(𝚫𝑤! + 𝑟!) =&𝚫𝑤! +&𝑟!

&𝚫𝑤! +&𝑟! − 𝑟% =&𝚫𝑤!

𝜋

𝜋

𝜋

𝜋

Insight: Checking ∑𝑟! = 𝑟′ sufficient for correctness

𝑆ℎ𝑎𝑟𝑒𝐾𝑒𝑦𝑠

31

𝑈𝑛𝑀𝑎𝑠𝑘

1. Key distribution

3. Reconstruction

2. Aggregation

&(𝚫𝑤! + 𝑟!) =&𝚫𝑤! +&𝑟!

𝑟9

&𝚫 𝑤! +&𝑟! − 𝑟% =&𝚫𝑤!
𝚫𝑤 + 𝑟"%

𝚫𝑤 + 𝑟$%

𝚫𝑤 + 𝑟#%

Insight: Checking ∑𝑟! = 𝑟′ sufficient for correctness

𝑆ℎ𝑎𝑟𝑒𝐾𝑒𝑦𝑠

32

𝑈𝑛𝑀𝑎𝑠𝑘

1. Key distribution

3. Reconstruction

2. Aggregation

&Enc(𝚫𝑤!, 𝑟!) = Enc(∑𝚫𝑤!, ∑𝑟!)

Enc(𝚫𝑤, 𝑟")

Enc(𝚫𝑤, 𝑟#)
𝑟9

Dec(Enc(∑𝚫𝑤!, ∑𝑟!), 𝑟%) =&𝚫𝑤!

Enc(𝚫𝑤, 𝑟$)

Additively Homomorphic
Commitments

Efficiency hinges on compatibility with zero-knowledge proofs

33

Protocol Requirements

Homomorphic in
messages and keys

Correctness
check

∑! Enc(𝚫𝑤!, 𝑟!)
=

Enc(∑!𝚫𝑤!, ∑!𝑟!)

ZKP Requirements

Range proofs over
large vectors

𝑝!
𝑝"

⋮

𝑝ℓ

Resource-constrained
devices

GGPR-style
zkSNARKs Bulletproofs

Proof size 𝑂(1) 𝑂(log(ℓ))

Prover time 𝑂(ℓlog(ℓ)) 𝑂(ℓ)

Verification time 𝑂(1) 𝑂(ℓ)

Operates on additively
homomorphic commitments ❌ ✅

Specialized range proof
construction ❌ ✅

Trusted setup ❌ ✅

Compatibility with Commitments

34

Additively Homomorphic
Commitments zkSNARKs

Encoding circuit

34

GGPR-style
zkSNARKs Bulletproofs

Proof size 𝑂(1) 𝑂(log(ℓ))

Prover time 𝑂(ℓlog(ℓ)) 𝑂(ℓ)

Verification time 𝑂(1) 𝑂(ℓ)

Operates directly on additively
homomorphic commitments ❌ ✅

Specialized range proof
construction ❌ ✅

No trusted setup ❌ ✅

Compatibility with Commitments

35

Extending Pedersen commitments for correctness

36

ElGamal commitment
• Server can compare ∑𝑔$! ↔ 𝑔$"

• Clients generate non-interactive proof-of-knowledge to
proof well-formedness, i.e., 𝑟% is the same in (𝑔𝚫&!ℎ$! , 𝑔$!)

Pedersen
Commitment

𝑔𝚫&!ℎ$!

BulletproofsCommitment to
Randomness

𝑔$!

Protocol
Requirements ZKP Requirements+

Secure Aggregation with Input Constraints

𝑆ℎ𝑎𝑟𝑒𝐾𝑒𝑦𝑠

37

1. Key distribution

2. Aggregation and Verification

&𝑔𝚫&"ℎ'" = 𝑔∑𝚫&"ℎ∑'"

Enc(𝚫𝑤, 𝑟")

Enc(𝚫𝑤, 𝑟#)

&

Enc(𝚫𝑤, 𝑟$)

3. Reconstruction

𝑈𝑛𝑀𝑎𝑠𝑘 𝑟9

Dec(Enc(∑𝚫𝑤!, ∑𝑟!), 𝑟%) =&𝚫𝑤!

𝑐 = Enc(𝚫𝑤, 𝑟$)

𝑐 = Enc(𝚫𝑤, 𝑟#)

𝑐 = Enc(𝚫𝑤, 𝑟")

Verify 𝑍𝐾𝑅𝑃#$ 𝚫𝑤!, 𝑟! {𝑐! = 𝑔𝚫$$ℎ%$ ∧ 𝚫𝑤! & < 𝐵}

, 𝜋)*+,(𝚫𝑤, 𝑟$)

, 𝜋)*+,(𝚫𝑤, 𝑟#)

, 𝜋)*+,(𝚫𝑤, 𝑟")

Dataset Train EncryptClient Prove

Enforcing Norm Bounds

38

ElGamal commitments

(𝑔𝚫$%ℎ%%, 𝑔%%)
(𝑔𝚫$&ℎ%&, 𝑔%&)

⋮
(𝑔𝚫$ℓℎ%ℓ, 𝑔%ℓ)

Bulletproof Range Proofs

𝜋'&%&(𝚫𝑤(, 𝑟()
𝜋'&%&(𝚫𝑤), 𝑟))

⋮
𝜋'&%&(𝚫𝑤ℓ, 𝑟ℓ)

𝐋--norm
Bounds each parameter individually

𝐋𝟐-norm
Bounds the sum of squared parameters

Dataset Train EncryptClient Prove

Enforcing Norm Bounds

39ElGamal commitments

(𝑔𝚫$%ℎ%%, 𝑔%%)
(𝑔𝚫$&ℎ%&, 𝑔%&)

⋮
(𝑔𝚫$ℓℎ%ℓ, 𝑔%ℓ)

Bulletproof Range Proofs

𝜋'&%&(𝚫𝑤(, 𝑟()
𝜋'&%&(𝚫𝑤), 𝑟))

⋮
𝜋'&%&(𝚫𝑤ℓ, 𝑟ℓ)

𝑔(𝚫$%)&ℎ%'%

𝑔(𝚫$&)&ℎ%'&

⋮
𝑔(𝚫$ℓ)&ℎ%'ℓ

Squared Range ProofSquared commitments

𝜋 𝜋!"#"(.
$%&

ℓ

(𝚫𝑤$)()

RoFL: End-To-End Performance

40

CIFAR-10 Model 273k Parameters Setup: 48 Clients, 160 rounds

0

500

1000

1500

2000

2500

Ti
m

e
(m

in
)

0
10
20
30
40
50
60
70

Ba
nd

w
id

th
* (

M
B)

SecAgg L2 L2 Optimized L∞ L∞ Optimized

5.4x 11x 6.8x

Accuracy: 0.86 0.85 0.82 0.85 0.85

* Per client per round

RoFL: End-To-End Performance

41

Shakespeare Model 818k Parameters Setup: 48 Clients, 20 rounds

0
100
200
300
400
500
600
700
800

0

10

20

30

40

50

60

Ti
m

e
(m

in
)

Ba
nd

w
id

th
* (

M
B)

SecAgg L∞ OptimizedL ∞

1.2x

* Per client per round

0.57Accuracy: 0.57 0.57

8.4x

42

pps-lab/fl-analysis

pps-lab/rofl-project-code

This work:

• Understanding FL Robustness
• RoFL: Secure Aggregation with Private Input Validation

pps-lab.com/research/ml-sec

Future work:

• Exploring additional client constraints for robustness
• Protocols with better bandwidth overhead
• Efficient ZKPs for resource-constrained provers

43

